Properties

Label 4.37_41e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 37 \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$62197= 37 \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + x^{4} + 2 x^{3} - 3 x^{2} - 2 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 57 a + 7 + \left(58 a + 47\right)\cdot 73 + 61\cdot 73^{2} + \left(14 a + 24\right)\cdot 73^{3} + \left(19 a + 38\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 32 + \left(14 a + 20\right)\cdot 73 + \left(72 a + 5\right)\cdot 73^{2} + \left(58 a + 66\right)\cdot 73^{3} + \left(53 a + 8\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 + 73 + 42\cdot 73^{2} + 33\cdot 73^{3} + 11\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 8\cdot 73 + 18\cdot 73^{2} + 11\cdot 73^{3} + 15\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 68 a + 16 + \left(18 a + 3\right)\cdot 73 + \left(56 a + 44\right)\cdot 73^{2} + \left(30 a + 23\right)\cdot 73^{3} + \left(59 a + 35\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 1 + \left(54 a + 65\right)\cdot 73 + \left(16 a + 47\right)\cdot 73^{2} + \left(42 a + 59\right)\cdot 73^{3} + \left(13 a + 36\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $0$
$6$ $2$ $(1,2)$ $2$
$9$ $2$ $(1,2)(3,5)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $-2$
$4$ $3$ $(3,5,6)$ $1$
$18$ $4$ $(1,5,2,3)(4,6)$ $0$
$12$ $6$ $(1,3,2,5,4,6)$ $0$
$12$ $6$ $(1,2)(3,5,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.