Properties

Label 4.3369.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $3369$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(3369\)\(\medspace = 3 \cdot 1123 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.3369.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.3369.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.3369.1

Defining polynomial

$f(x)$$=$ \( x^{5} + x^{3} - x^{2} - x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 17 + 23\cdot 37 + 26\cdot 37^{2} + 28\cdot 37^{3} + 35\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 29 + 30\cdot 37 + 20\cdot 37^{2} + 8\cdot 37^{3} + 23\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 5 + 14\cdot 37 + 24\cdot 37^{2} + 3\cdot 37^{3} + 29\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 a + 8 + \left(3 a + 20\right)\cdot 37 + \left(5 a + 29\right)\cdot 37^{2} + \left(14 a + 27\right)\cdot 37^{3} + \left(28 a + 35\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 26 a + 15 + \left(33 a + 22\right)\cdot 37 + \left(31 a + 9\right)\cdot 37^{2} + \left(22 a + 5\right)\cdot 37^{3} + \left(8 a + 24\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$