Properties

Label 4.2e9_7e2_37.8t35.1
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 2^{9} \cdot 7^{2} \cdot 37 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$928256= 2^{9} \cdot 7^{2} \cdot 37 $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 2 x^{5} - x^{4} - 2 x^{3} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 743 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 41 + 117\cdot 743 + 318\cdot 743^{2} + 43\cdot 743^{3} + 73\cdot 743^{4} + 513\cdot 743^{5} + 31\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 62 + 234\cdot 743 + 523\cdot 743^{2} + 298\cdot 743^{3} + 510\cdot 743^{4} + 579\cdot 743^{5} + 651\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 115 + 357\cdot 743 + 451\cdot 743^{2} + 565\cdot 743^{3} + 303\cdot 743^{4} + 586\cdot 743^{5} + 272\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 357 + 381\cdot 743 + 621\cdot 743^{2} + 55\cdot 743^{3} + 138\cdot 743^{4} + 629\cdot 743^{5} + 493\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 410 + 26\cdot 743 + 349\cdot 743^{2} + 602\cdot 743^{3} + 726\cdot 743^{4} + 465\cdot 743^{5} + 111\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 598 + 268\cdot 743 + 31\cdot 743^{2} + 406\cdot 743^{3} + 96\cdot 743^{4} + 578\cdot 743^{5} + 371\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 659 + 570\cdot 743 + 443\cdot 743^{2} + 530\cdot 743^{3} + 24\cdot 743^{4} + 530\cdot 743^{5} + 441\cdot 743^{6} +O\left(743^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 731 + 272\cdot 743 + 233\cdot 743^{2} + 469\cdot 743^{3} + 355\cdot 743^{4} + 575\cdot 743^{5} + 596\cdot 743^{6} +O\left(743^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,6)(7,8)$
$(1,6)$
$(2,8)$
$(1,8)(2,6)$
$(4,5)$
$(3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $-4$
$2$ $2$ $(3,7)(4,5)$ $0$
$4$ $2$ $(3,7)$ $2$
$4$ $2$ $(2,8)(3,7)$ $0$
$4$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $0$
$4$ $2$ $(3,5)(4,7)$ $-2$
$4$ $2$ $(1,6)(3,7)(4,5)$ $-2$
$4$ $2$ $(1,8)(2,6)(3,7)(4,5)$ $2$
$8$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$8$ $2$ $(1,6)(3,5)(4,7)$ $0$
$4$ $4$ $(1,8,6,2)(3,4,7,5)$ $0$
$4$ $4$ $(3,4,7,5)$ $-2$
$4$ $4$ $(1,2,6,8)(3,7)(4,5)$ $2$
$8$ $4$ $(1,4,6,5)(2,3,8,7)$ $0$
$8$ $4$ $(1,6)(3,4,7,5)$ $0$
$8$ $4$ $(1,8)(2,6)(3,4,7,5)$ $0$
$16$ $4$ $(1,4)(2,3,8,7)(5,6)$ $0$
$16$ $4$ $(1,4,8,7)(2,3,6,5)$ $0$
$16$ $8$ $(1,4,8,7,6,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.