Properties

Label 4.2e9_601e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 601^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$184934912= 2^{9} \cdot 601^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} - 23 x^{3} + 26 x^{2} + 25 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 15 + \left(19 a + 19\right)\cdot 47 + \left(44 a + 30\right)\cdot 47^{2} + \left(25 a + 4\right)\cdot 47^{3} + \left(23 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 30 + \left(18 a + 27\right)\cdot 47 + \left(37 a + 15\right)\cdot 47^{2} + \left(6 a + 34\right)\cdot 47^{3} + \left(28 a + 31\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 45 + \left(27 a + 42\right)\cdot 47 + \left(2 a + 5\right)\cdot 47^{2} + \left(21 a + 12\right)\cdot 47^{3} + 23 a\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 + 16\cdot 47 + 6\cdot 47^{2} + 2\cdot 47^{3} + 28\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 11 + \left(28 a + 3\right)\cdot 47 + \left(9 a + 25\right)\cdot 47^{2} + \left(40 a + 10\right)\cdot 47^{3} + \left(18 a + 34\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 35 + 31\cdot 47 + 10\cdot 47^{2} + 30\cdot 47^{3} + 20\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,3)$ $-2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,6)(2,4,5)$ $-2$
$4$ $3$ $(2,4,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,2,3,4,6,5)$ $0$
$12$ $6$ $(1,3)(2,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.