Properties

Label 4.2e9_5e2_17e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 5^{2} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$3699200= 2^{9} \cdot 5^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 4 x^{3} + 3 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 27 + \left(44 a + 8\right)\cdot 47 + \left(25 a + 25\right)\cdot 47^{2} + \left(45 a + 37\right)\cdot 47^{3} + \left(40 a + 22\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 24 + \left(2 a + 28\right)\cdot 47 + \left(21 a + 32\right)\cdot 47^{2} + \left(a + 8\right)\cdot 47^{3} + \left(6 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 36 + 34\cdot 47 + 43\cdot 47^{2} + 34\cdot 47^{3} + 11\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + \left(26 a + 30\right)\cdot 47 + \left(43 a + 41\right)\cdot 47^{2} + \left(12 a + 14\right)\cdot 47^{3} + \left(30 a + 17\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 41 a + 12 + \left(20 a + 29\right)\cdot 47 + \left(3 a + 8\right)\cdot 47^{2} + \left(34 a + 44\right)\cdot 47^{3} + \left(16 a + 17\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 + 9\cdot 47 + 36\cdot 47^{2} + 12\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-2$
$6$ $2$ $(2,6)$ $0$
$9$ $2$ $(2,6)(4,5)$ $0$
$4$ $3$ $(1,2,6)$ $-2$
$4$ $3$ $(1,2,6)(3,4,5)$ $1$
$18$ $4$ $(1,3)(2,5,6,4)$ $0$
$12$ $6$ $(1,4,2,5,6,3)$ $1$
$12$ $6$ $(2,6)(3,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.