Properties

Label 4.2e9_3e6_17e2.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 3^{6} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$107868672= 2^{9} \cdot 3^{6} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 12 x^{4} - 2 x^{3} + 36 x^{2} + 12 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 5 a + 40 + \left(23 a + 21\right)\cdot 47 + \left(14 a + 9\right)\cdot 47^{2} + \left(10 a + 21\right)\cdot 47^{3} + \left(3 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 42 a + 3 + \left(23 a + 16\right)\cdot 47 + \left(32 a + 15\right)\cdot 47^{2} + \left(36 a + 27\right)\cdot 47^{3} + \left(43 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 3 + 20\cdot 47 + 15\cdot 47^{2} + 39\cdot 47^{3} + 43\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 a + 25 + \left(3 a + 31\right)\cdot 47 + \left(38 a + 26\right)\cdot 47^{2} + \left(11 a + 34\right)\cdot 47^{3} + \left(25 a + 5\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 + 9\cdot 47 + 22\cdot 47^{2} + 45\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 19 + \left(43 a + 42\right)\cdot 47 + \left(8 a + 4\right)\cdot 47^{2} + \left(35 a + 20\right)\cdot 47^{3} + \left(21 a + 44\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(2,5)$$-2$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)(3,4,6)$$-2$
$4$$3$$(3,4,6)$$1$
$18$$4$$(1,3)(2,6,5,4)$$0$
$12$$6$$(1,3,2,4,5,6)$$0$
$12$$6$$(2,5)(3,4,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.