Properties

Label 4.2e9_3e6_17e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 3^{6} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$107868672= 2^{9} \cdot 3^{6} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 12 x^{4} - 4 x^{3} + 18 x^{2} + 12 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 32\cdot 47 + 33\cdot 47^{2} + 22\cdot 47^{3} + 11\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 44 a + 20 + \left(44 a + 31\right)\cdot 47 + \left(46 a + 5\right)\cdot 47^{2} + \left(45 a + 13\right)\cdot 47^{3} + \left(10 a + 6\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 + 12\cdot 47 + 21\cdot 47^{2} + 20\cdot 47^{3} + 43\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 a + 19 + \left(26 a + 12\right)\cdot 47 + \left(4 a + 45\right)\cdot 47^{2} + \left(12 a + 26\right)\cdot 47^{3} + \left(4 a + 3\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 13 + \left(20 a + 22\right)\cdot 47 + \left(42 a + 27\right)\cdot 47^{2} + \left(34 a + 46\right)\cdot 47^{3} + \left(42 a + 46\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 14 + \left(2 a + 30\right)\cdot 47 + 7\cdot 47^{2} + \left(a + 11\right)\cdot 47^{3} + \left(36 a + 29\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(2,6)$$0$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)$$-2$
$4$$3$$(1,2,6)(3,4,5)$$1$
$18$$4$$(1,3)(2,5,6,4)$$0$
$12$$6$$(1,4,2,5,6,3)$$1$
$12$$6$$(2,6)(3,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.