Properties

Label 4.2e9_3e5.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 3^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$124416= 2^{9} \cdot 3^{5} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{3} - 3 x^{2} - 12 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 48 + \left(10 a + 2\right)\cdot 97 + \left(39 a + 73\right)\cdot 97^{2} + \left(81 a + 51\right)\cdot 97^{3} + \left(61 a + 56\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 78 + \left(92 a + 9\right)\cdot 97 + \left(53 a + 78\right)\cdot 97^{2} + \left(53 a + 53\right)\cdot 97^{3} + \left(81 a + 70\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 86 + 50\cdot 97 + 71\cdot 97^{2} + 31\cdot 97^{3} + 27\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 90 a + 55 + \left(86 a + 5\right)\cdot 97 + \left(57 a + 5\right)\cdot 97^{2} + \left(15 a + 94\right)\cdot 97^{3} + \left(35 a + 36\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 91 a + 84 + \left(4 a + 95\right)\cdot 97 + \left(43 a + 39\right)\cdot 97^{2} + \left(43 a + 53\right)\cdot 97^{3} + \left(15 a + 1\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 + 29\cdot 97 + 23\cdot 97^{2} + 6\cdot 97^{3} + 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $-1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.