Properties

Label 4.2e9_3e2_5e3_67e2.12t36.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2585664000= 2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 4 x^{4} - 19 x^{3} - 32 x^{2} - 24 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 23 + \left(34 a + 35\right)\cdot 53 + \left(48 a + 34\right)\cdot 53^{2} + \left(40 a + 27\right)\cdot 53^{3} + \left(13 a + 26\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 + 30\cdot 53 + 35\cdot 53^{2} + 41\cdot 53^{3} + 38\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 41 a + 9 + \left(32 a + 6\right)\cdot 53 + \left(35 a + 47\right)\cdot 53^{2} + \left(34 a + 42\right)\cdot 53^{3} + \left(25 a + 51\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 + 3\cdot 53 + 8\cdot 53^{2} + 23\cdot 53^{3} + 40\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 a + 25 + \left(18 a + 40\right)\cdot 53 + \left(4 a + 35\right)\cdot 53^{2} + \left(12 a + 36\right)\cdot 53^{3} + \left(39 a + 40\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 12 a + 14 + \left(20 a + 43\right)\cdot 53 + \left(17 a + 50\right)\cdot 53^{2} + \left(18 a + 39\right)\cdot 53^{3} + \left(27 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $0$
$6$ $2$ $(1,2)$ $-2$
$9$ $2$ $(1,2)(3,4)$ $0$
$4$ $3$ $(1,2,5)(3,4,6)$ $-2$
$4$ $3$ $(3,4,6)$ $1$
$18$ $4$ $(1,4,2,3)(5,6)$ $0$
$12$ $6$ $(1,3,2,4,5,6)$ $0$
$12$ $6$ $(1,2)(3,4,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.