Properties

Label 4.2e9_3e2_5e2_17e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$565977600= 2^{9} \cdot 3^{2} \cdot 5^{2} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + 2 x^{3} - 5 x^{2} + x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.2e3_17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 106 a + 24 + \left(99 a + 79\right)\cdot 107 + \left(4 a + 61\right)\cdot 107^{2} + \left(69 a + 99\right)\cdot 107^{3} + \left(31 a + 60\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 3 + \left(96 a + 6\right)\cdot 107 + \left(58 a + 22\right)\cdot 107^{2} + \left(106 a + 91\right)\cdot 107^{3} + \left(75 a + 3\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 82 + 73\cdot 107 + 97\cdot 107^{2} + 78\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 52 a + 9 + \left(10 a + 16\right)\cdot 107 + \left(48 a + 54\right)\cdot 107^{2} + 30\cdot 107^{3} + \left(31 a + 94\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 79 + 93\cdot 107 + 103\cdot 107^{2} + 48\cdot 107^{3} + 72\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 20 + \left(7 a + 52\right)\cdot 107 + \left(102 a + 88\right)\cdot 107^{2} + \left(37 a + 49\right)\cdot 107^{3} + \left(75 a + 11\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(2,3)$$-2$
$9$$2$$(1,5)(2,3)$$0$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$4$$3$$(2,3,4)$$1$
$18$$4$$(1,2,5,3)(4,6)$$0$
$12$$6$$(1,2,5,3,6,4)$$0$
$12$$6$$(1,5,6)(2,3)$$1$
The blue line marks the conjugacy class containing complex conjugation.