Properties

Label 4.2e9_149e2.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 2^{9} \cdot 149^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$11366912= 2^{9} \cdot 149^{2} $
Artin number field: Splitting field of $f= x^{5} - 5 x^{3} - 5 x^{2} - 2 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.2e3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 1 + 9 a\cdot 41 + \left(6 a + 26\right)\cdot 41^{2} + 16 a\cdot 41^{3} + \left(4 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 + 5\cdot 41 + 18\cdot 41^{2} + 30\cdot 41^{3} + 23\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 32 + \left(21 a + 10\right)\cdot 41 + \left(32 a + 4\right)\cdot 41^{2} + \left(38 a + 3\right)\cdot 41^{3} + \left(31 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 38 + \left(31 a + 2\right)\cdot 41 + \left(34 a + 35\right)\cdot 41^{2} + \left(24 a + 1\right)\cdot 41^{3} + \left(36 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 27 + \left(19 a + 21\right)\cdot 41 + \left(8 a + 39\right)\cdot 41^{2} + \left(2 a + 4\right)\cdot 41^{3} + \left(9 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.