Properties

Label 4.2e8_89e3.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 89^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$180472064= 2^{8} \cdot 89^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 22 x^{3} + 21 x^{2} - 20 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 73 + 33\cdot 73^{2} + 18\cdot 73^{3} + 6\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 24 + \left(67 a + 3\right)\cdot 73 + \left(72 a + 23\right)\cdot 73^{2} + \left(4 a + 67\right)\cdot 73^{3} + \left(9 a + 34\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 72 a + 1 + \left(32 a + 59\right)\cdot 73 + \left(43 a + 7\right)\cdot 73^{2} + \left(29 a + 41\right)\cdot 73^{3} + \left(45 a + 16\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 71 + \left(40 a + 12\right)\cdot 73 + \left(29 a + 32\right)\cdot 73^{2} + \left(43 a + 13\right)\cdot 73^{3} + \left(27 a + 50\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 62 + \left(5 a + 22\right)\cdot 73 + 28\cdot 73^{2} + \left(68 a + 9\right)\cdot 73^{3} + \left(63 a + 57\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 61 + 46\cdot 73 + 21\cdot 73^{2} + 69\cdot 73^{3} + 53\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $1$
$4$ $3$ $(1,3,4)$ $-2$
$18$ $4$ $(1,5,3,2)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $1$
$12$ $6$ $(1,3)(2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.