Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 14 + 335\cdot 337 + 162\cdot 337^{2} + 117\cdot 337^{3} + 63\cdot 337^{4} + 57\cdot 337^{5} + 308\cdot 337^{6} + 116\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 63 + 157\cdot 337 + 48\cdot 337^{2} + 294\cdot 337^{3} + 18\cdot 337^{4} + 164\cdot 337^{5} + 5\cdot 337^{6} + 41\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 66 + 170\cdot 337 + 231\cdot 337^{2} + 42\cdot 337^{3} + 64\cdot 337^{4} + 294\cdot 337^{5} + 101\cdot 337^{6} + 273\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 137 + 248\cdot 337 + 34\cdot 337^{2} + 104\cdot 337^{3} + 54\cdot 337^{4} + 188\cdot 337^{5} + 176\cdot 337^{6} + 216\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 200 + 88\cdot 337 + 302\cdot 337^{2} + 232\cdot 337^{3} + 282\cdot 337^{4} + 148\cdot 337^{5} + 160\cdot 337^{6} + 120\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 271 + 166\cdot 337 + 105\cdot 337^{2} + 294\cdot 337^{3} + 272\cdot 337^{4} + 42\cdot 337^{5} + 235\cdot 337^{6} + 63\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 274 + 179\cdot 337 + 288\cdot 337^{2} + 42\cdot 337^{3} + 318\cdot 337^{4} + 172\cdot 337^{5} + 331\cdot 337^{6} + 295\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 323 + 337 + 174\cdot 337^{2} + 219\cdot 337^{3} + 273\cdot 337^{4} + 279\cdot 337^{5} + 28\cdot 337^{6} + 220\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(3,6)(4,5)$ |
| $(2,7)(3,4)(5,6)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,2,8,7)(3,4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(3,6)(4,5)$ | $0$ |
| $4$ | $2$ | $(2,7)(3,4)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $0$ |
| $4$ | $2$ | $(2,7)(3,5)(4,6)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,4,6,5)$ | $0$ |
| $2$ | $4$ | $(1,2,8,7)(3,5,6,4)$ | $0$ |
| $4$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $0$ |
| $4$ | $8$ | $(1,6,2,5,8,3,7,4)$ | $0$ |
| $4$ | $8$ | $(1,6,7,4,8,3,2,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.