Properties

Label 4.2e8_7e4.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{8} \cdot 7^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$614656= 2^{8} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{8} + 7 x^{6} + 21 x^{4} + 21 x^{2} + 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 14 + 335\cdot 337 + 162\cdot 337^{2} + 117\cdot 337^{3} + 63\cdot 337^{4} + 57\cdot 337^{5} + 308\cdot 337^{6} + 116\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 63 + 157\cdot 337 + 48\cdot 337^{2} + 294\cdot 337^{3} + 18\cdot 337^{4} + 164\cdot 337^{5} + 5\cdot 337^{6} + 41\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 66 + 170\cdot 337 + 231\cdot 337^{2} + 42\cdot 337^{3} + 64\cdot 337^{4} + 294\cdot 337^{5} + 101\cdot 337^{6} + 273\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 137 + 248\cdot 337 + 34\cdot 337^{2} + 104\cdot 337^{3} + 54\cdot 337^{4} + 188\cdot 337^{5} + 176\cdot 337^{6} + 216\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 200 + 88\cdot 337 + 302\cdot 337^{2} + 232\cdot 337^{3} + 282\cdot 337^{4} + 148\cdot 337^{5} + 160\cdot 337^{6} + 120\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 271 + 166\cdot 337 + 105\cdot 337^{2} + 294\cdot 337^{3} + 272\cdot 337^{4} + 42\cdot 337^{5} + 235\cdot 337^{6} + 63\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 274 + 179\cdot 337 + 288\cdot 337^{2} + 42\cdot 337^{3} + 318\cdot 337^{4} + 172\cdot 337^{5} + 331\cdot 337^{6} + 295\cdot 337^{7} +O\left(337^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 323 + 337 + 174\cdot 337^{2} + 219\cdot 337^{3} + 273\cdot 337^{4} + 279\cdot 337^{5} + 28\cdot 337^{6} + 220\cdot 337^{7} +O\left(337^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(3,6)(4,5)$
$(2,7)(3,4)(5,6)$
$(1,5,8,4)(2,6,7,3)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(2,7)(3,4)(5,6)$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$4$ $2$ $(2,7)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$4$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$4$ $8$ $(1,6,2,5,8,3,7,4)$ $0$
$4$ $8$ $(1,6,7,4,8,3,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.