Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 337 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 17 + 213\cdot 337 + 123\cdot 337^{2} + 263\cdot 337^{3} + 33\cdot 337^{4} + 189\cdot 337^{5} + 289\cdot 337^{6} + 280\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 60 + 316\cdot 337 + 2\cdot 337^{2} + 193\cdot 337^{3} + 42\cdot 337^{4} + 159\cdot 337^{5} + 99\cdot 337^{6} + 21\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 108 + 316\cdot 337 + 151\cdot 337^{2} + 324\cdot 337^{3} + 191\cdot 337^{4} + 184\cdot 337^{5} + 249\cdot 337^{6} + 255\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 153 + 165\cdot 337 + 58\cdot 337^{2} + 230\cdot 337^{3} + 68\cdot 337^{4} + 141\cdot 337^{5} + 35\cdot 337^{6} + 116\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 219 + 109\cdot 337 + 157\cdot 337^{2} + 44\cdot 337^{3} + 25\cdot 337^{4} + 92\cdot 337^{5} + 129\cdot 337^{6} + 283\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 223 + 260\cdot 337 + 23\cdot 337^{2} + 187\cdot 337^{3} + 209\cdot 337^{4} + 156\cdot 337^{5} + 254\cdot 337^{6} + 266\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 243 + 82\cdot 337 + 118\cdot 337^{2} + 206\cdot 337^{3} + 200\cdot 337^{4} + 281\cdot 337^{5} + 72\cdot 337^{6} + 253\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 327 + 220\cdot 337 + 37\cdot 337^{2} + 236\cdot 337^{3} + 238\cdot 337^{4} + 143\cdot 337^{5} + 217\cdot 337^{6} + 207\cdot 337^{7} +O\left(337^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,3,5)(2,8,4,6)$ |
| $(1,6,3,8)(2,5,4,7)$ |
| $(1,3)(2,4)(5,7)(6,8)$ |
| $(1,6,7,4,3,8,5,2)$ |
| $(2,4)(6,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,3)(2,4)(5,7)(6,8)$ |
$-4$ |
| $2$ |
$2$ |
$(2,4)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(2,8)(4,6)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,4)(3,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,3)(5,8)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,6,4,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,3,5)(2,8,4,6)$ |
$0$ |
| $4$ |
$4$ |
$(1,8,3,6)(2,7,4,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,7,4,3,8,5,2)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,8,3,2,5,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.