Properties

Label 4.2e8_7_43e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 7 \cdot 43^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$3313408= 2^{8} \cdot 7 \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 2 x^{4} + 2 x^{2} - 4 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 5 + \left(10 a + 16\right)\cdot 29 + \left(16 a + 7\right)\cdot 29^{2} + \left(12 a + 8\right)\cdot 29^{3} + \left(a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 + 8\cdot 29 + 14\cdot 29^{2} + 23\cdot 29^{3} + 18\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 2 + \left(16 a + 2\right)\cdot 29 + \left(27 a + 4\right)\cdot 29^{2} + \left(7 a + 4\right)\cdot 29^{3} + \left(5 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 16 + \left(18 a + 1\right)\cdot 29 + \left(12 a + 21\right)\cdot 29^{2} + \left(16 a + 25\right)\cdot 29^{3} + \left(27 a + 25\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 + 7\cdot 29 + 29^{2} + 9\cdot 29^{3} + 6\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 27 a + 12 + \left(12 a + 22\right)\cdot 29 + \left(a + 9\right)\cdot 29^{2} + \left(21 a + 16\right)\cdot 29^{3} + \left(23 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(2,3,6)$ $-2$
$4$ $3$ $(1,4,5)(2,3,6)$ $1$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,2,4,3,5,6)$ $-1$
$12$ $6$ $(1,4,5)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.