Properties

Label 4.2e8_5e5.10t12.1
Dimension 4
Group $S_5$
Conductor $ 2^{8} \cdot 5^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$800000= 2^{8} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 20 x^{2} - 10 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 30 a + 12 + \left(24 a + 5\right)\cdot 31 + 10\cdot 31^{2} + \left(27 a + 22\right)\cdot 31^{3} + \left(10 a + 3\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 a + 3 + \left(a + 25\right)\cdot 31 + \left(9 a + 6\right)\cdot 31^{2} + \left(19 a + 23\right)\cdot 31^{3} + \left(11 a + 14\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 10 + \left(6 a + 25\right)\cdot 31 + \left(30 a + 17\right)\cdot 31^{2} + \left(3 a + 13\right)\cdot 31^{3} + \left(20 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 14 + \left(29 a + 7\right)\cdot 31 + \left(21 a + 23\right)\cdot 31^{2} + \left(11 a + 21\right)\cdot 31^{3} + \left(19 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 + 29\cdot 31 + 3\cdot 31^{2} + 12\cdot 31^{3} + 26\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.