Properties

Label 4.2e8_5e4_29e2.8t16.4c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$134560000= 2^{8} \cdot 5^{4} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} + 130 x^{4} + 4205 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 41 + 114\cdot 181 + 136\cdot 181^{2} + 53\cdot 181^{3} + 45\cdot 181^{4} + 16\cdot 181^{5} + 135\cdot 181^{6} + 50\cdot 181^{7} + 5\cdot 181^{8} + 97\cdot 181^{9} + 48\cdot 181^{10} + 32\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 55 + 53\cdot 181 + 52\cdot 181^{2} + 132\cdot 181^{3} + 16\cdot 181^{4} + 24\cdot 181^{5} + 113\cdot 181^{6} + 108\cdot 181^{7} + 134\cdot 181^{8} + 135\cdot 181^{9} + 108\cdot 181^{10} + 164\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 72 + 23\cdot 181 + 109\cdot 181^{2} + 160\cdot 181^{3} + 99\cdot 181^{4} + 126\cdot 181^{5} + 39\cdot 181^{6} + 135\cdot 181^{7} + 79\cdot 181^{8} + 33\cdot 181^{9} + 91\cdot 181^{10} + 138\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 80 + 178\cdot 181 + 135\cdot 181^{2} + 109\cdot 181^{3} + 138\cdot 181^{4} + 74\cdot 181^{5} + 175\cdot 181^{6} + 154\cdot 181^{7} + 112\cdot 181^{8} + 21\cdot 181^{9} + 66\cdot 181^{10} + 47\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 101 + 2\cdot 181 + 45\cdot 181^{2} + 71\cdot 181^{3} + 42\cdot 181^{4} + 106\cdot 181^{5} + 5\cdot 181^{6} + 26\cdot 181^{7} + 68\cdot 181^{8} + 159\cdot 181^{9} + 114\cdot 181^{10} + 133\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 109 + 157\cdot 181 + 71\cdot 181^{2} + 20\cdot 181^{3} + 81\cdot 181^{4} + 54\cdot 181^{5} + 141\cdot 181^{6} + 45\cdot 181^{7} + 101\cdot 181^{8} + 147\cdot 181^{9} + 89\cdot 181^{10} + 42\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 126 + 127\cdot 181 + 128\cdot 181^{2} + 48\cdot 181^{3} + 164\cdot 181^{4} + 156\cdot 181^{5} + 67\cdot 181^{6} + 72\cdot 181^{7} + 46\cdot 181^{8} + 45\cdot 181^{9} + 72\cdot 181^{10} + 16\cdot 181^{11} +O\left(181^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 140 + 66\cdot 181 + 44\cdot 181^{2} + 127\cdot 181^{3} + 135\cdot 181^{4} + 164\cdot 181^{5} + 45\cdot 181^{6} + 130\cdot 181^{7} + 175\cdot 181^{8} + 83\cdot 181^{9} + 132\cdot 181^{10} + 148\cdot 181^{11} +O\left(181^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(2,7)(3,6)$
$(1,3,7,5,8,6,2,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$
$4$$8$$(1,5,2,3,8,4,7,6)$$0$
$4$$8$$(1,3,2,5,8,6,7,4)$$0$
$4$$8$$(1,5,7,3,8,4,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.