Properties

Label 4.2e8_5e4_19e2.8t16.12c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$57760000= 2^{8} \cdot 5^{4} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} + 85 x^{4} + 1805 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 3 + 80\cdot 101 + 39\cdot 101^{2} + 77\cdot 101^{3} + 15\cdot 101^{4} + 20\cdot 101^{5} + 29\cdot 101^{6} + 39\cdot 101^{7} + 90\cdot 101^{8} + 3\cdot 101^{9} + 69\cdot 101^{10} + 98\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 14 + 101 + 37\cdot 101^{2} + 100\cdot 101^{3} + 93\cdot 101^{4} + 88\cdot 101^{5} + 77\cdot 101^{6} + 27\cdot 101^{7} + 93\cdot 101^{8} + 18\cdot 101^{9} + 55\cdot 101^{10} + 53\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 30 + 7\cdot 101 + 77\cdot 101^{2} + 57\cdot 101^{3} + 41\cdot 101^{4} + 82\cdot 101^{5} + 64\cdot 101^{7} + 45\cdot 101^{8} + 84\cdot 101^{9} + 81\cdot 101^{10} + 64\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 39 + 81\cdot 101 + 74\cdot 101^{2} + 24\cdot 101^{3} + 3\cdot 101^{4} + 74\cdot 101^{5} + 79\cdot 101^{6} + 64\cdot 101^{8} + 71\cdot 101^{9} + 60\cdot 101^{10} + 49\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 62 + 19\cdot 101 + 26\cdot 101^{2} + 76\cdot 101^{3} + 97\cdot 101^{4} + 26\cdot 101^{5} + 21\cdot 101^{6} + 100\cdot 101^{7} + 36\cdot 101^{8} + 29\cdot 101^{9} + 40\cdot 101^{10} + 51\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 71 + 93\cdot 101 + 23\cdot 101^{2} + 43\cdot 101^{3} + 59\cdot 101^{4} + 18\cdot 101^{5} + 100\cdot 101^{6} + 36\cdot 101^{7} + 55\cdot 101^{8} + 16\cdot 101^{9} + 19\cdot 101^{10} + 36\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 87 + 99\cdot 101 + 63\cdot 101^{2} + 7\cdot 101^{4} + 12\cdot 101^{5} + 23\cdot 101^{6} + 73\cdot 101^{7} + 7\cdot 101^{8} + 82\cdot 101^{9} + 45\cdot 101^{10} + 47\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 98 + 20\cdot 101 + 61\cdot 101^{2} + 23\cdot 101^{3} + 85\cdot 101^{4} + 80\cdot 101^{5} + 71\cdot 101^{6} + 61\cdot 101^{7} + 10\cdot 101^{8} + 97\cdot 101^{9} + 31\cdot 101^{10} + 2\cdot 101^{11} +O\left(101^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(2,7)(3,6)$
$(1,5,6,2,8,4,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$8$$(1,5,6,2,8,4,3,7)$$0$
$4$$8$$(1,2,3,5,8,7,6,4)$$0$
$4$$8$$(1,5,6,7,8,4,3,2)$$0$
$4$$8$$(1,7,3,5,8,2,6,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.