Properties

Label 4.2e8_5e4_19e2.8t16.11
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$57760000= 2^{8} \cdot 5^{4} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 220 x^{4} - 1045 x^{2} + 1805 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 281 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 44 + 108\cdot 281 + 133\cdot 281^{2} + 134\cdot 281^{3} + 103\cdot 281^{4} + 95\cdot 281^{5} + 247\cdot 281^{6} + 217\cdot 281^{7} + 133\cdot 281^{8} + 8\cdot 281^{9} + 261\cdot 281^{10} + 124\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 53 + 262\cdot 281 + 126\cdot 281^{2} + 98\cdot 281^{3} + 125\cdot 281^{4} + 101\cdot 281^{5} + 265\cdot 281^{6} + 160\cdot 281^{7} + 244\cdot 281^{8} + 265\cdot 281^{9} + 262\cdot 281^{10} + 271\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 99 + 208\cdot 281 + 245\cdot 281^{2} + 166\cdot 281^{3} + 181\cdot 281^{4} + 172\cdot 281^{5} + 77\cdot 281^{6} + 62\cdot 281^{7} + 221\cdot 281^{8} + 129\cdot 281^{9} + 136\cdot 281^{10} + 169\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 128 + 108\cdot 281 + 61\cdot 281^{2} + 51\cdot 281^{3} + 219\cdot 281^{4} + 165\cdot 281^{5} + 66\cdot 281^{6} + 156\cdot 281^{7} + 82\cdot 281^{8} + 79\cdot 281^{9} + 196\cdot 281^{10} + 228\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 153 + 172\cdot 281 + 219\cdot 281^{2} + 229\cdot 281^{3} + 61\cdot 281^{4} + 115\cdot 281^{5} + 214\cdot 281^{6} + 124\cdot 281^{7} + 198\cdot 281^{8} + 201\cdot 281^{9} + 84\cdot 281^{10} + 52\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 182 + 72\cdot 281 + 35\cdot 281^{2} + 114\cdot 281^{3} + 99\cdot 281^{4} + 108\cdot 281^{5} + 203\cdot 281^{6} + 218\cdot 281^{7} + 59\cdot 281^{8} + 151\cdot 281^{9} + 144\cdot 281^{10} + 111\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 228 + 18\cdot 281 + 154\cdot 281^{2} + 182\cdot 281^{3} + 155\cdot 281^{4} + 179\cdot 281^{5} + 15\cdot 281^{6} + 120\cdot 281^{7} + 36\cdot 281^{8} + 15\cdot 281^{9} + 18\cdot 281^{10} + 9\cdot 281^{11} +O\left(281^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 237 + 172\cdot 281 + 147\cdot 281^{2} + 146\cdot 281^{3} + 177\cdot 281^{4} + 185\cdot 281^{5} + 33\cdot 281^{6} + 63\cdot 281^{7} + 147\cdot 281^{8} + 272\cdot 281^{9} + 19\cdot 281^{10} + 156\cdot 281^{11} +O\left(281^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,6,5,8,7,3,4)$
$(2,7)(4,5)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$4$ $8$ $(1,2,6,5,8,7,3,4)$ $0$
$4$ $8$ $(1,5,3,2,8,4,6,7)$ $0$
$4$ $8$ $(1,2,6,4,8,7,3,5)$ $0$
$4$ $8$ $(1,4,3,2,8,5,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.