Properties

Label 4.2e8_5e4_11e2.8t16.9c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$19360000= 2^{8} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} + 50 x^{4} + 605 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 1 + 22\cdot 41 + 31\cdot 41^{2} + 8\cdot 41^{3} + 14\cdot 41^{4} + 7\cdot 41^{5} + 24\cdot 41^{6} + 19\cdot 41^{7} + 2\cdot 41^{8} + 33\cdot 41^{9} + 11\cdot 41^{10} + 12\cdot 41^{11} + 23\cdot 41^{12} + 5\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 9 + 2\cdot 41 + 24\cdot 41^{2} + 26\cdot 41^{3} + 24\cdot 41^{4} + 12\cdot 41^{5} + 5\cdot 41^{6} + 3\cdot 41^{7} + 7\cdot 41^{8} + 21\cdot 41^{9} + 15\cdot 41^{10} + 32\cdot 41^{11} + 37\cdot 41^{12} + 30\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 12 + 35\cdot 41 + 38\cdot 41^{2} + 39\cdot 41^{3} + 23\cdot 41^{4} + 41^{5} + 16\cdot 41^{6} + 35\cdot 41^{8} + 15\cdot 41^{9} + 21\cdot 41^{11} + 24\cdot 41^{12} + 37\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 15 + 25\cdot 41 + 31\cdot 41^{2} + 40\cdot 41^{3} + 31\cdot 41^{4} + 36\cdot 41^{5} + 28\cdot 41^{6} + 15\cdot 41^{7} + 19\cdot 41^{8} + 33\cdot 41^{9} + 6\cdot 41^{10} + 40\cdot 41^{11} + 11\cdot 41^{12} + 36\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 26 + 15\cdot 41 + 9\cdot 41^{2} + 9\cdot 41^{4} + 4\cdot 41^{5} + 12\cdot 41^{6} + 25\cdot 41^{7} + 21\cdot 41^{8} + 7\cdot 41^{9} + 34\cdot 41^{10} + 29\cdot 41^{12} + 4\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 29 + 5\cdot 41 + 2\cdot 41^{2} + 41^{3} + 17\cdot 41^{4} + 39\cdot 41^{5} + 24\cdot 41^{6} + 40\cdot 41^{7} + 5\cdot 41^{8} + 25\cdot 41^{9} + 40\cdot 41^{10} + 19\cdot 41^{11} + 16\cdot 41^{12} + 3\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 32 + 38\cdot 41 + 16\cdot 41^{2} + 14\cdot 41^{3} + 16\cdot 41^{4} + 28\cdot 41^{5} + 35\cdot 41^{6} + 37\cdot 41^{7} + 33\cdot 41^{8} + 19\cdot 41^{9} + 25\cdot 41^{10} + 8\cdot 41^{11} + 3\cdot 41^{12} + 10\cdot 41^{13} +O\left(41^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 40 + 18\cdot 41 + 9\cdot 41^{2} + 32\cdot 41^{3} + 26\cdot 41^{4} + 33\cdot 41^{5} + 16\cdot 41^{6} + 21\cdot 41^{7} + 38\cdot 41^{8} + 7\cdot 41^{9} + 29\cdot 41^{10} + 28\cdot 41^{11} + 17\cdot 41^{12} + 35\cdot 41^{13} +O\left(41^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,7,3,8,5,2,6)$
$(3,6)(4,5)$
$(2,7)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(2,7)(4,5)$$0$
$4$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$4$$8$$(1,4,7,3,8,5,2,6)$$0$
$4$$8$$(1,3,2,4,8,6,7,5)$$0$
$4$$8$$(1,4,2,3,8,5,7,6)$$0$
$4$$8$$(1,3,7,4,8,6,2,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.