Properties

Label 4.2e8_5e4_11e2.8t16.8c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$19360000= 2^{8} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} - 40 x^{4} - 110 x^{2} + 605 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 331 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ $ 26 + 182\cdot 331 + 18\cdot 331^{2} + 313\cdot 331^{3} + 270\cdot 331^{4} + 231\cdot 331^{5} + 92\cdot 331^{6} + 75\cdot 331^{7} + 221\cdot 331^{8} + 12\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 78 + 255\cdot 331 + 42\cdot 331^{2} + 198\cdot 331^{3} + 253\cdot 331^{4} + 243\cdot 331^{5} + 36\cdot 331^{6} + 296\cdot 331^{7} + 22\cdot 331^{8} + 44\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 119 + 111\cdot 331 + 146\cdot 331^{2} + 219\cdot 331^{3} + 272\cdot 331^{4} + 162\cdot 331^{5} + 326\cdot 331^{6} + 163\cdot 331^{7} + 197\cdot 331^{8} + 299\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 143 + 88\cdot 331 + 152\cdot 331^{2} + 155\cdot 331^{3} + 165\cdot 331^{4} + 218\cdot 331^{5} + 260\cdot 331^{6} + 244\cdot 331^{7} + 329\cdot 331^{8} + 329\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 188 + 242\cdot 331 + 178\cdot 331^{2} + 175\cdot 331^{3} + 165\cdot 331^{4} + 112\cdot 331^{5} + 70\cdot 331^{6} + 86\cdot 331^{7} + 331^{8} + 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 212 + 219\cdot 331 + 184\cdot 331^{2} + 111\cdot 331^{3} + 58\cdot 331^{4} + 168\cdot 331^{5} + 4\cdot 331^{6} + 167\cdot 331^{7} + 133\cdot 331^{8} + 31\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 253 + 75\cdot 331 + 288\cdot 331^{2} + 132\cdot 331^{3} + 77\cdot 331^{4} + 87\cdot 331^{5} + 294\cdot 331^{6} + 34\cdot 331^{7} + 308\cdot 331^{8} + 286\cdot 331^{9} +O\left(331^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 305 + 148\cdot 331 + 312\cdot 331^{2} + 17\cdot 331^{3} + 60\cdot 331^{4} + 99\cdot 331^{5} + 238\cdot 331^{6} + 255\cdot 331^{7} + 109\cdot 331^{8} + 318\cdot 331^{9} +O\left(331^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,2,3,5,8,7,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$4$$8$$(1,2,3,5,8,7,6,4)$$0$
$4$$8$$(1,5,6,2,8,4,3,7)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
$4$$8$$(1,4,6,2,8,5,3,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.