Properties

Label 4.2e8_5e4_11e2.8t16.7c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$19360000= 2^{8} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 15 x^{6} + 120 x^{4} - 440 x^{2} + 605 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 14.
Roots:
$r_{ 1 }$ $=$ $ 2 + 58\cdot 61 + 48\cdot 61^{2} + 5\cdot 61^{3} + 30\cdot 61^{4} + 35\cdot 61^{5} + 44\cdot 61^{6} + 27\cdot 61^{7} + 32\cdot 61^{8} + 28\cdot 61^{9} + 35\cdot 61^{10} + 16\cdot 61^{11} + 31\cdot 61^{12} + 27\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 13 + 58\cdot 61 + 22\cdot 61^{2} + 17\cdot 61^{3} + 52\cdot 61^{4} + 51\cdot 61^{5} + 34\cdot 61^{6} + 42\cdot 61^{7} + 32\cdot 61^{8} + 18\cdot 61^{9} + 47\cdot 61^{10} + 7\cdot 61^{11} + 50\cdot 61^{12} + 26\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 20 + 5\cdot 61 + 60\cdot 61^{2} + 28\cdot 61^{3} + 37\cdot 61^{4} + 12\cdot 61^{5} + 48\cdot 61^{6} + 21\cdot 61^{7} + 23\cdot 61^{8} + 31\cdot 61^{9} + 31\cdot 61^{10} + 21\cdot 61^{11} + 11\cdot 61^{12} + 54\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 28 + 2\cdot 61 + 39\cdot 61^{2} + 33\cdot 61^{3} + 61^{5} + 24\cdot 61^{6} + 24\cdot 61^{7} + 41\cdot 61^{8} + 13\cdot 61^{9} + 36\cdot 61^{10} + 8\cdot 61^{11} + 31\cdot 61^{12} + 46\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 33 + 58\cdot 61 + 21\cdot 61^{2} + 27\cdot 61^{3} + 60\cdot 61^{4} + 59\cdot 61^{5} + 36\cdot 61^{6} + 36\cdot 61^{7} + 19\cdot 61^{8} + 47\cdot 61^{9} + 24\cdot 61^{10} + 52\cdot 61^{11} + 29\cdot 61^{12} + 14\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 41 + 55\cdot 61 + 32\cdot 61^{3} + 23\cdot 61^{4} + 48\cdot 61^{5} + 12\cdot 61^{6} + 39\cdot 61^{7} + 37\cdot 61^{8} + 29\cdot 61^{9} + 29\cdot 61^{10} + 39\cdot 61^{11} + 49\cdot 61^{12} + 6\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 48 + 2\cdot 61 + 38\cdot 61^{2} + 43\cdot 61^{3} + 8\cdot 61^{4} + 9\cdot 61^{5} + 26\cdot 61^{6} + 18\cdot 61^{7} + 28\cdot 61^{8} + 42\cdot 61^{9} + 13\cdot 61^{10} + 53\cdot 61^{11} + 10\cdot 61^{12} + 34\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 59 + 2\cdot 61 + 12\cdot 61^{2} + 55\cdot 61^{3} + 30\cdot 61^{4} + 25\cdot 61^{5} + 16\cdot 61^{6} + 33\cdot 61^{7} + 28\cdot 61^{8} + 32\cdot 61^{9} + 25\cdot 61^{10} + 44\cdot 61^{11} + 29\cdot 61^{12} + 33\cdot 61^{13} +O\left(61^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7,5,8,3,2,4)$
$(3,6)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$4$$2$$(1,8)(4,5)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$4$$8$$(1,6,7,5,8,3,2,4)$$0$
$4$$8$$(1,5,2,6,8,4,7,3)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$
$4$$8$$(1,5,2,3,8,4,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.