Properties

Label 4.2e8_5e4_11e2.8t16.6c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$19360000= 2^{8} \cdot 5^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 20 x^{6} + 150 x^{4} - 495 x^{2} + 605 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 5 + 3\cdot 71 + 49\cdot 71^{2} + 47\cdot 71^{3} + 3\cdot 71^{4} + 7\cdot 71^{5} + 16\cdot 71^{6} + 13\cdot 71^{7} + 54\cdot 71^{8} + 28\cdot 71^{9} + 11\cdot 71^{10} + 10\cdot 71^{11} + 10\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 12 + 54\cdot 71 + 3\cdot 71^{2} + 39\cdot 71^{3} + 36\cdot 71^{4} + 22\cdot 71^{5} + 59\cdot 71^{6} + 26\cdot 71^{7} + 36\cdot 71^{8} + 48\cdot 71^{9} + 22\cdot 71^{10} + 15\cdot 71^{11} + 23\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 13 + 65\cdot 71 + 56\cdot 71^{2} + 63\cdot 71^{3} + 53\cdot 71^{4} + 9\cdot 71^{5} + 45\cdot 71^{6} + 24\cdot 71^{7} + 3\cdot 71^{8} + 5\cdot 71^{9} + 69\cdot 71^{10} + 15\cdot 71^{11} + 38\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 26 + 10\cdot 71 + 42\cdot 71^{2} + 27\cdot 71^{3} + 63\cdot 71^{4} + 27\cdot 71^{5} + 32\cdot 71^{6} + 48\cdot 71^{7} + 2\cdot 71^{8} + 52\cdot 71^{9} + 65\cdot 71^{10} + 39\cdot 71^{11} + 44\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 45 + 60\cdot 71 + 28\cdot 71^{2} + 43\cdot 71^{3} + 7\cdot 71^{4} + 43\cdot 71^{5} + 38\cdot 71^{6} + 22\cdot 71^{7} + 68\cdot 71^{8} + 18\cdot 71^{9} + 5\cdot 71^{10} + 31\cdot 71^{11} + 26\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 58 + 5\cdot 71 + 14\cdot 71^{2} + 7\cdot 71^{3} + 17\cdot 71^{4} + 61\cdot 71^{5} + 25\cdot 71^{6} + 46\cdot 71^{7} + 67\cdot 71^{8} + 65\cdot 71^{9} + 71^{10} + 55\cdot 71^{11} + 32\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 59 + 16\cdot 71 + 67\cdot 71^{2} + 31\cdot 71^{3} + 34\cdot 71^{4} + 48\cdot 71^{5} + 11\cdot 71^{6} + 44\cdot 71^{7} + 34\cdot 71^{8} + 22\cdot 71^{9} + 48\cdot 71^{10} + 55\cdot 71^{11} + 47\cdot 71^{12} +O\left(71^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 66 + 67\cdot 71 + 21\cdot 71^{2} + 23\cdot 71^{3} + 67\cdot 71^{4} + 63\cdot 71^{5} + 54\cdot 71^{6} + 57\cdot 71^{7} + 16\cdot 71^{8} + 42\cdot 71^{9} + 59\cdot 71^{10} + 60\cdot 71^{11} + 60\cdot 71^{12} +O\left(71^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,7)(2,8)(3,5)(4,6)$
$(1,4,2,3,8,5,7,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,7)(2,8)(3,5)(4,6)$$0$
$4$$2$$(1,8)(3,6)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,2,8,7)(3,4,6,5)$$0$
$4$$8$$(1,4,2,3,8,5,7,6)$$0$
$4$$8$$(1,3,7,4,8,6,2,5)$$0$
$4$$8$$(1,5,2,3,8,4,7,6)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.