Properties

Label 4.2e8_5e4.8t16.2c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$160000= 2^{8} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 10 x^{4} - 10 x^{2} + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 461 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 36 + 146\cdot 461 + 416\cdot 461^{2} + 237\cdot 461^{3} + 154\cdot 461^{4} + 122\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 118 + 151\cdot 461 + 194\cdot 461^{2} + 37\cdot 461^{3} + 29\cdot 461^{4} + 224\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 185 + 235\cdot 461 + 149\cdot 461^{2} + 342\cdot 461^{3} + 454\cdot 461^{4} + 220\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 229 + 30\cdot 461 + 309\cdot 461^{2} + 294\cdot 461^{3} + 231\cdot 461^{4} + 305\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 232 + 430\cdot 461 + 151\cdot 461^{2} + 166\cdot 461^{3} + 229\cdot 461^{4} + 155\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 276 + 225\cdot 461 + 311\cdot 461^{2} + 118\cdot 461^{3} + 6\cdot 461^{4} + 240\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 343 + 309\cdot 461 + 266\cdot 461^{2} + 423\cdot 461^{3} + 431\cdot 461^{4} + 236\cdot 461^{5} +O\left(461^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 425 + 314\cdot 461 + 44\cdot 461^{2} + 223\cdot 461^{3} + 306\cdot 461^{4} + 338\cdot 461^{5} +O\left(461^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,2,8,5,6,7)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,8)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$2$$4$$(1,3,8,6)(2,5,7,4)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$8$$(1,4,3,2,8,5,6,7)$$0$
$4$$8$$(1,2,6,4,8,7,3,5)$$0$
$4$$8$$(1,4,6,2,8,5,3,7)$$0$
$4$$8$$(1,2,3,4,8,7,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.