Properties

Label 4.2e8_5e4.8t16.1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$160000= 2^{8} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{6} + 6 x^{5} - 10 x^{4} + 6 x^{3} - 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 461 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 17 + 243\cdot 461 + 158\cdot 461^{2} + 350\cdot 461^{3} + 70\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 + 113\cdot 461 + 238\cdot 461^{2} + 184\cdot 461^{3} + 361\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 52 + 55\cdot 461 + 398\cdot 461^{2} + 421\cdot 461^{3} + 433\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 133 + 125\cdot 461 + 117\cdot 461^{2} + 12\cdot 461^{3} + 168\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 162 + 240\cdot 461 + 30\cdot 461^{2} + 184\cdot 461^{3} + 390\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 217 + 423\cdot 461 + 200\cdot 461^{2} + 439\cdot 461^{3} + 380\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 380 + 139\cdot 461 + 236\cdot 461^{3} + 266\cdot 461^{4} +O\left(461^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 387 + 42\cdot 461 + 239\cdot 461^{2} + 15\cdot 461^{3} + 233\cdot 461^{4} +O\left(461^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(3,4)(7,8)$
$(1,8,3,5,6,7,4,2)$
$(2,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,5)(3,4)(7,8)$ $-4$
$2$ $2$ $(2,5)(7,8)$ $0$
$4$ $2$ $(3,4)(7,8)$ $0$
$4$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $0$
$2$ $4$ $(1,3,6,4)(2,8,5,7)$ $0$
$2$ $4$ $(1,3,6,4)(2,7,5,8)$ $0$
$4$ $8$ $(1,8,3,5,6,7,4,2)$ $0$
$4$ $8$ $(1,5,4,8,6,2,3,7)$ $0$
$4$ $8$ $(1,8,4,5,6,7,3,2)$ $0$
$4$ $8$ $(1,5,3,8,6,2,4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.