Properties

Label 4.2e8_5e3_19e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 5^{3} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$11552000= 2^{8} \cdot 5^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 8 x^{3} - 19 x^{2} + 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 38 a + 27 + \left(4 a + 57\right)\cdot 59 + \left(29 a + 52\right)\cdot 59^{2} + \left(14 a + 2\right)\cdot 59^{3} + \left(2 a + 54\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 24\cdot 59 + 40\cdot 59^{2} + 46\cdot 59^{3} + 40\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 6 + \left(54 a + 24\right)\cdot 59 + \left(29 a + 18\right)\cdot 59^{2} + \left(44 a + 47\right)\cdot 59^{3} + \left(56 a + 41\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 51 + \left(40 a + 36\right)\cdot 59 + \left(17 a + 20\right)\cdot 59^{2} + \left(43 a + 52\right)\cdot 59^{3} + \left(29 a + 15\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 13 + \left(18 a + 56\right)\cdot 59 + \left(41 a + 56\right)\cdot 59^{2} + \left(15 a + 18\right)\cdot 59^{3} + \left(29 a + 2\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 + 36\cdot 59 + 46\cdot 59^{2} + 8\cdot 59^{3} + 22\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(1,3)$
$(1,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(1,3)$ $-2$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,6)(2,4,5)$ $-2$
$4$ $3$ $(2,4,5)$ $1$
$18$ $4$ $(1,4,3,2)(5,6)$ $0$
$12$ $6$ $(1,2,3,4,6,5)$ $0$
$12$ $6$ $(1,3)(2,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.