Properties

Label 4.2e8_5e3_11e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{8} \cdot 5^{3} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$3872000= 2^{8} \cdot 5^{3} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{6} + x^{4} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 109 + 462\cdot 509 + 499\cdot 509^{2} + 407\cdot 509^{3} + 348\cdot 509^{4} + 104\cdot 509^{5} + 320\cdot 509^{6} + 485\cdot 509^{7} + 321\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 142 + 58\cdot 509 + 500\cdot 509^{2} + 294\cdot 509^{3} + 411\cdot 509^{4} + 28\cdot 509^{5} + 181\cdot 509^{6} + 162\cdot 509^{7} + 30\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 200 + 451\cdot 509 + 260\cdot 509^{2} + 20\cdot 509^{3} + 391\cdot 509^{4} + 52\cdot 509^{5} + 306\cdot 509^{6} + 423\cdot 509^{7} + 265\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 225 + 165\cdot 509 + 289\cdot 509^{2} + 445\cdot 509^{3} + 228\cdot 509^{4} + 414\cdot 509^{5} + 140\cdot 509^{6} + 197\cdot 509^{7} + 355\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 284 + 343\cdot 509 + 219\cdot 509^{2} + 63\cdot 509^{3} + 280\cdot 509^{4} + 94\cdot 509^{5} + 368\cdot 509^{6} + 311\cdot 509^{7} + 153\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 309 + 57\cdot 509 + 248\cdot 509^{2} + 488\cdot 509^{3} + 117\cdot 509^{4} + 456\cdot 509^{5} + 202\cdot 509^{6} + 85\cdot 509^{7} + 243\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 367 + 450\cdot 509 + 8\cdot 509^{2} + 214\cdot 509^{3} + 97\cdot 509^{4} + 480\cdot 509^{5} + 327\cdot 509^{6} + 346\cdot 509^{7} + 478\cdot 509^{8} +O\left(509^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 400 + 46\cdot 509 + 9\cdot 509^{2} + 101\cdot 509^{3} + 160\cdot 509^{4} + 404\cdot 509^{5} + 188\cdot 509^{6} + 23\cdot 509^{7} + 187\cdot 509^{8} +O\left(509^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,8,7)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(1,8)(4,5)$
$(2,7)(3,6)$
$(1,8)(2,7)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,8)(2,7)$$0$
$2$$2$$(1,7)(2,8)(3,4)(5,6)$$0$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,7)(2,8)(3,6)(4,5)$$2$
$4$$2$$(3,5)(4,6)$$-2$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$4$$2$$(1,6)(2,4)(3,8)(5,7)$$0$
$4$$4$$(1,4,8,5)(2,3,7,6)$$0$
$4$$4$$(1,3,8,6)(2,5,7,4)$$0$
$4$$4$$(1,2,8,7)(3,4,6,5)$$0$
$8$$4$$(1,2,8,7)(4,5)$$0$
$8$$4$$(1,3,7,4)(2,5,8,6)$$0$
$8$$4$$(1,5,2,6)(3,8,4,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.