Properties

Label 4.2e8_5e2_31.8t35.7c1
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 2^{8} \cdot 5^{2} \cdot 31 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$198400= 2^{8} \cdot 5^{2} \cdot 31 $
Artin number field: Splitting field of $f= x^{8} + x^{6} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Even
Determinant: 1.2e2_31.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 1061 }$ to precision 18.
Roots:
$r_{ 1 }$ $=$ $ 46 + 773\cdot 1061 + 180\cdot 1061^{2} + 1000\cdot 1061^{3} + 721\cdot 1061^{4} + 784\cdot 1061^{5} + 388\cdot 1061^{6} + 885\cdot 1061^{7} + 71\cdot 1061^{8} + 1051\cdot 1061^{9} + 544\cdot 1061^{10} + 845\cdot 1061^{11} + 741\cdot 1061^{12} + 90\cdot 1061^{13} + 807\cdot 1061^{14} + 1051\cdot 1061^{15} + 408\cdot 1061^{16} + 269\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 2 }$ $=$ $ 120 + 421\cdot 1061 + 695\cdot 1061^{2} + 39\cdot 1061^{3} + 15\cdot 1061^{4} + 652\cdot 1061^{5} + 801\cdot 1061^{6} + 241\cdot 1061^{7} + 271\cdot 1061^{8} + 164\cdot 1061^{9} + 401\cdot 1061^{10} + 367\cdot 1061^{11} + 903\cdot 1061^{12} + 978\cdot 1061^{13} + 10\cdot 1061^{14} + 510\cdot 1061^{15} + 198\cdot 1061^{16} + 954\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 3 }$ $=$ $ 280 + 387\cdot 1061 + 117\cdot 1061^{2} + 1032\cdot 1061^{3} + 908\cdot 1061^{4} + 136\cdot 1061^{5} + 416\cdot 1061^{6} + 99\cdot 1061^{7} + 36\cdot 1061^{8} + 861\cdot 1061^{9} + 94\cdot 1061^{10} + 350\cdot 1061^{11} + 993\cdot 1061^{12} + 896\cdot 1061^{13} + 754\cdot 1061^{14} + 698\cdot 1061^{15} + 728\cdot 1061^{16} + 678\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 4 }$ $=$ $ 375 + 214\cdot 1061 + 217\cdot 1061^{2} + 833\cdot 1061^{3} + 35\cdot 1061^{4} + 254\cdot 1061^{5} + 1025\cdot 1061^{6} + 576\cdot 1061^{7} + 174\cdot 1061^{8} + 895\cdot 1061^{9} + 607\cdot 1061^{10} + 940\cdot 1061^{11} + 811\cdot 1061^{12} + 23\cdot 1061^{13} + 789\cdot 1061^{14} + 503\cdot 1061^{15} + 546\cdot 1061^{16} + 628\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 5 }$ $=$ $ 686 + 846\cdot 1061 + 843\cdot 1061^{2} + 227\cdot 1061^{3} + 1025\cdot 1061^{4} + 806\cdot 1061^{5} + 35\cdot 1061^{6} + 484\cdot 1061^{7} + 886\cdot 1061^{8} + 165\cdot 1061^{9} + 453\cdot 1061^{10} + 120\cdot 1061^{11} + 249\cdot 1061^{12} + 1037\cdot 1061^{13} + 271\cdot 1061^{14} + 557\cdot 1061^{15} + 514\cdot 1061^{16} + 432\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 6 }$ $=$ $ 781 + 673\cdot 1061 + 943\cdot 1061^{2} + 28\cdot 1061^{3} + 152\cdot 1061^{4} + 924\cdot 1061^{5} + 644\cdot 1061^{6} + 961\cdot 1061^{7} + 1024\cdot 1061^{8} + 199\cdot 1061^{9} + 966\cdot 1061^{10} + 710\cdot 1061^{11} + 67\cdot 1061^{12} + 164\cdot 1061^{13} + 306\cdot 1061^{14} + 362\cdot 1061^{15} + 332\cdot 1061^{16} + 382\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 7 }$ $=$ $ 941 + 639\cdot 1061 + 365\cdot 1061^{2} + 1021\cdot 1061^{3} + 1045\cdot 1061^{4} + 408\cdot 1061^{5} + 259\cdot 1061^{6} + 819\cdot 1061^{7} + 789\cdot 1061^{8} + 896\cdot 1061^{9} + 659\cdot 1061^{10} + 693\cdot 1061^{11} + 157\cdot 1061^{12} + 82\cdot 1061^{13} + 1050\cdot 1061^{14} + 550\cdot 1061^{15} + 862\cdot 1061^{16} + 106\cdot 1061^{17} +O\left(1061^{ 18 }\right)$
$r_{ 8 }$ $=$ $ 1015 + 287\cdot 1061 + 880\cdot 1061^{2} + 60\cdot 1061^{3} + 339\cdot 1061^{4} + 276\cdot 1061^{5} + 672\cdot 1061^{6} + 175\cdot 1061^{7} + 989\cdot 1061^{8} + 9\cdot 1061^{9} + 516\cdot 1061^{10} + 215\cdot 1061^{11} + 319\cdot 1061^{12} + 970\cdot 1061^{13} + 253\cdot 1061^{14} + 9\cdot 1061^{15} + 652\cdot 1061^{16} + 791\cdot 1061^{17} +O\left(1061^{ 18 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,8)(6,7)$
$(4,5)$
$(2,7)$
$(3,6)$
$(1,2)(7,8)$
$(1,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(3,6)$$-2$
$4$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(3,4)(5,6)$$2$
$4$$2$$(1,2)(3,6)(4,5)(7,8)$$-2$
$4$$2$$(1,8)(3,6)(4,5)$$2$
$8$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$8$$2$$(1,2)(3,6)(7,8)$$0$
$4$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(3,5,6,4)$$-2$
$4$$4$$(1,7,8,2)(3,6)(4,5)$$2$
$8$$4$$(1,4,8,5)(2,3,7,6)$$0$
$8$$4$$(1,2)(3,5,6,4)(7,8)$$0$
$8$$4$$(1,8)(3,5,6,4)$$0$
$16$$4$$(1,4)(2,3,7,6)(5,8)$$0$
$16$$4$$(1,4,2,3)(5,7,6,8)$$0$
$16$$8$$(1,4,2,3,8,5,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.