Properties

Label 4.2e8_5e2_19e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{8} \cdot 5^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2310400= 2^{8} \cdot 5^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 3 x^{4} + 15 x^{2} - 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 461 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 72 + 210\cdot 461 + 205\cdot 461^{2} + 101\cdot 461^{3} + 327\cdot 461^{4} + 64\cdot 461^{5} + 271\cdot 461^{6} + 268\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 125 + 345\cdot 461 + 152\cdot 461^{2} + 183\cdot 461^{3} + 209\cdot 461^{4} + 135\cdot 461^{5} + 319\cdot 461^{6} + 108\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 150 + 72\cdot 461 + 218\cdot 461^{2} + 173\cdot 461^{3} + 186\cdot 461^{4} + 146\cdot 461^{5} + 212\cdot 461^{6} + 5\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 181 + 251\cdot 461 + 201\cdot 461^{2} + 222\cdot 461^{3} + 357\cdot 461^{4} + 326\cdot 461^{5} + 240\cdot 461^{6} + 413\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 280 + 209\cdot 461 + 259\cdot 461^{2} + 238\cdot 461^{3} + 103\cdot 461^{4} + 134\cdot 461^{5} + 220\cdot 461^{6} + 47\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 311 + 388\cdot 461 + 242\cdot 461^{2} + 287\cdot 461^{3} + 274\cdot 461^{4} + 314\cdot 461^{5} + 248\cdot 461^{6} + 455\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 336 + 115\cdot 461 + 308\cdot 461^{2} + 277\cdot 461^{3} + 251\cdot 461^{4} + 325\cdot 461^{5} + 141\cdot 461^{6} + 352\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 389 + 250\cdot 461 + 255\cdot 461^{2} + 359\cdot 461^{3} + 133\cdot 461^{4} + 396\cdot 461^{5} + 189\cdot 461^{6} + 192\cdot 461^{7} +O\left(461^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,7)(4,5)$
$(1,4,8,5)(2,3,7,6)$
$(2,4)(3,6)(5,7)$
$(1,6,8,3)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$4$ $2$ $(2,4)(3,6)(5,7)$ $0$
$4$ $2$ $(1,6)(3,8)(4,5)$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$2$ $4$ $(1,6,8,3)(2,4,7,5)$ $0$
$4$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$4$ $8$ $(1,2,6,4,8,7,3,5)$ $0$
$4$ $8$ $(1,7,3,4,8,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.