Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 461 }$ to precision 8.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 + 225\cdot 461 + 367\cdot 461^{2} + 132\cdot 461^{3} + 37\cdot 461^{4} + 268\cdot 461^{5} + 412\cdot 461^{6} + 358\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 71 + 327\cdot 461 + 412\cdot 461^{2} + 373\cdot 461^{3} + 18\cdot 461^{4} + 192\cdot 461^{5} + 177\cdot 461^{6} + 186\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 176 + 195\cdot 461 + 17\cdot 461^{2} + 214\cdot 461^{3} + 434\cdot 461^{4} + 82\cdot 461^{5} + 422\cdot 461^{6} + 280\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 229 + 287\cdot 461 + 174\cdot 461^{2} + 12\cdot 461^{3} + 447\cdot 461^{4} + 326\cdot 461^{5} + 366\cdot 461^{6} + 198\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 232 + 173\cdot 461 + 286\cdot 461^{2} + 448\cdot 461^{3} + 13\cdot 461^{4} + 134\cdot 461^{5} + 94\cdot 461^{6} + 262\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 285 + 265\cdot 461 + 443\cdot 461^{2} + 246\cdot 461^{3} + 26\cdot 461^{4} + 378\cdot 461^{5} + 38\cdot 461^{6} + 180\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 390 + 133\cdot 461 + 48\cdot 461^{2} + 87\cdot 461^{3} + 442\cdot 461^{4} + 268\cdot 461^{5} + 283\cdot 461^{6} + 274\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 454 + 235\cdot 461 + 93\cdot 461^{2} + 328\cdot 461^{3} + 423\cdot 461^{4} + 192\cdot 461^{5} + 48\cdot 461^{6} + 102\cdot 461^{7} +O\left(461^{ 8 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,3,2,4,8,6,7,5)$ |
| $(1,5,8,4)(2,6,7,3)$ |
| $(1,7,8,2)(3,4,6,5)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $-4$ |
| $2$ | $2$ | $(1,8)(2,7)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,4)(3,8)(5,7)$ | $0$ |
| $4$ | $2$ | $(1,7)(2,8)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,8)(3,4)(5,6)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,4,6,5)$ | $0$ |
| $2$ | $4$ | $(1,7,8,2)(3,5,6,4)$ | $0$ |
| $4$ | $4$ | $(1,5,8,4)(2,6,7,3)$ | $0$ |
| $4$ | $8$ | $(1,5,7,6,8,4,2,3)$ | $0$ |
| $4$ | $8$ | $(1,4,2,6,8,5,7,3)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.