Properties

Label 4.2e8_5e2_19e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{8} \cdot 5^{2} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$2310400= 2^{8} \cdot 5^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{8} + 5 x^{6} + 3 x^{4} - 15 x^{2} - 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 461 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 7 + 225\cdot 461 + 367\cdot 461^{2} + 132\cdot 461^{3} + 37\cdot 461^{4} + 268\cdot 461^{5} + 412\cdot 461^{6} + 358\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 71 + 327\cdot 461 + 412\cdot 461^{2} + 373\cdot 461^{3} + 18\cdot 461^{4} + 192\cdot 461^{5} + 177\cdot 461^{6} + 186\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 176 + 195\cdot 461 + 17\cdot 461^{2} + 214\cdot 461^{3} + 434\cdot 461^{4} + 82\cdot 461^{5} + 422\cdot 461^{6} + 280\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 229 + 287\cdot 461 + 174\cdot 461^{2} + 12\cdot 461^{3} + 447\cdot 461^{4} + 326\cdot 461^{5} + 366\cdot 461^{6} + 198\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 232 + 173\cdot 461 + 286\cdot 461^{2} + 448\cdot 461^{3} + 13\cdot 461^{4} + 134\cdot 461^{5} + 94\cdot 461^{6} + 262\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 285 + 265\cdot 461 + 443\cdot 461^{2} + 246\cdot 461^{3} + 26\cdot 461^{4} + 378\cdot 461^{5} + 38\cdot 461^{6} + 180\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 390 + 133\cdot 461 + 48\cdot 461^{2} + 87\cdot 461^{3} + 442\cdot 461^{4} + 268\cdot 461^{5} + 283\cdot 461^{6} + 274\cdot 461^{7} +O\left(461^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 454 + 235\cdot 461 + 93\cdot 461^{2} + 328\cdot 461^{3} + 423\cdot 461^{4} + 192\cdot 461^{5} + 48\cdot 461^{6} + 102\cdot 461^{7} +O\left(461^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,2,4,8,6,7,5)$
$(1,5,8,4)(2,6,7,3)$
$(1,7,8,2)(3,4,6,5)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$
$4$ $2$ $(1,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $4$ $(1,5,8,4)(2,6,7,3)$ $0$
$4$ $8$ $(1,5,7,6,8,4,2,3)$ $0$
$4$ $8$ $(1,4,2,6,8,5,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.