Properties

Label 4.2e8_5e2_17.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 5^{2} \cdot 17 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$108800= 2^{8} \cdot 5^{2} \cdot 17 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - x^{2} + 9 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 21 + \left(2 a + 34\right)\cdot 47 + \left(32 a + 1\right)\cdot 47^{2} + \left(20 a + 21\right)\cdot 47^{3} + \left(7 a + 18\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 45 a + 36 + \left(5 a + 43\right)\cdot 47 + \left(37 a + 35\right)\cdot 47^{2} + 43 a\cdot 47^{3} + \left(23 a + 9\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 32 a + 4 + \left(44 a + 24\right)\cdot 47 + \left(14 a + 16\right)\cdot 47^{2} + \left(26 a + 30\right)\cdot 47^{3} + \left(39 a + 12\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 2 a + 32 + \left(41 a + 10\right)\cdot 47 + \left(9 a + 10\right)\cdot 47^{2} + \left(3 a + 4\right)\cdot 47^{3} + \left(23 a + 13\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 36\cdot 47 + 40\cdot 47^{2} + 11\cdot 47^{3} + 28\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 7 + 38\cdot 47 + 35\cdot 47^{2} + 25\cdot 47^{3} + 12\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,3,5)$ $-2$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $-1$
$12$ $6$ $(2,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.