Properties

Label 4.2e8_5e2_11e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{8} \cdot 5^{2} \cdot 11^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$774400= 2^{8} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 4 x^{3} - 4 x^{2} - 16 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 7\cdot 41 + 15\cdot 41^{2} + 36\cdot 41^{3} + 29\cdot 41^{4} + 20\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 2 a + 24 + \left(4 a + 5\right)\cdot 41 + \left(26 a + 39\right)\cdot 41^{2} + \left(24 a + 4\right)\cdot 41^{3} + \left(12 a + 8\right)\cdot 41^{4} + \left(3 a + 14\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 14 + \left(11 a + 3\right)\cdot 41 + \left(11 a + 14\right)\cdot 41^{2} + \left(34 a + 14\right)\cdot 41^{3} + \left(40 a + 4\right)\cdot 41^{4} + \left(8 a + 5\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 30 + \left(36 a + 15\right)\cdot 41 + \left(14 a + 31\right)\cdot 41^{2} + \left(16 a + 11\right)\cdot 41^{3} + \left(28 a + 21\right)\cdot 41^{4} + \left(37 a + 11\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 31 + 28\cdot 41 + 27\cdot 41^{2} + 31\cdot 41^{3} + 7\cdot 41^{4} + 39\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 21 + \left(29 a + 21\right)\cdot 41 + \left(29 a + 36\right)\cdot 41^{2} + \left(6 a + 23\right)\cdot 41^{3} + 10\cdot 41^{4} + \left(32 a + 32\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(5,6)$
$(3,6,5)$
$(1,2,4)(3,6,5)$
$(2,4)(5,6)$
$(1,5,4,3,2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$9$$2$$(1,4)(5,6)$$0$
$2$$3$$(1,2,4)(3,6,5)$$-2$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$4$$3$$(1,4,2)$$1$
$6$$6$$(1,5,4,3,2,6)$$0$
$6$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.