Properties

Label 4.2e8_5_11e2.8t29.2
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{8} \cdot 5 \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$154880= 2^{8} \cdot 5 \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 6 x^{6} - 4 x^{5} + 6 x^{4} + 4 x^{3} + 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 99 + 463\cdot 509 + 352\cdot 509^{2} + 93\cdot 509^{3} + 381\cdot 509^{4} + 21\cdot 509^{5} + 340\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 160 + 140\cdot 509 + 481\cdot 509^{2} + 362\cdot 509^{3} + 100\cdot 509^{4} + 252\cdot 509^{5} + 46\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 311 + 257\cdot 509 + 193\cdot 509^{2} + 99\cdot 509^{3} + 301\cdot 509^{4} + 340\cdot 509^{5} + 464\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 373 + 90\cdot 509 + 37\cdot 509^{2} + 91\cdot 509^{3} + 265\cdot 509^{4} + 508\cdot 509^{5} + 412\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 374 + 245\cdot 509 + 157\cdot 509^{2} + 231\cdot 509^{3} + 197\cdot 509^{4} + 489\cdot 509^{5} + 287\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 382 + 52\cdot 509 + 290\cdot 509^{2} + 213\cdot 509^{3} + 345\cdot 509^{4} + 284\cdot 509^{5} + 417\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 417 + 335\cdot 509 + 498\cdot 509^{2} + 301\cdot 509^{3} + 279\cdot 509^{4} + 181\cdot 509^{5} + 293\cdot 509^{6} +O\left(509^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 431 + 449\cdot 509 + 24\cdot 509^{2} + 133\cdot 509^{3} + 165\cdot 509^{4} + 466\cdot 509^{5} + 281\cdot 509^{6} +O\left(509^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(4,7)$
$(1,3,8,5)(2,4,6,7)$
$(1,2,4,3)(5,8,6,7)$
$(1,8)(4,7)$
$(2,6)(3,5)$
$(1,3,7,2)(4,6,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,6)(3,5)(4,7)$ $-4$
$2$ $2$ $(1,4)(2,3)(5,6)(7,8)$ $0$
$2$ $2$ $(2,6)(3,5)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$4$ $2$ $(1,5)(2,4)(3,8)(6,7)$ $0$
$4$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$
$4$ $2$ $(2,6)(4,7)$ $0$
$4$ $2$ $(2,5)(3,6)$ $2$
$4$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $-2$
$4$ $4$ $(1,3,8,5)(2,4,6,7)$ $0$
$4$ $4$ $(1,2,8,6)(3,7,5,4)$ $0$
$4$ $4$ $(1,4,8,7)(2,5,6,3)$ $0$
$8$ $4$ $(1,2,4,3)(5,8,6,7)$ $0$
$8$ $4$ $(1,3,7,2)(4,6,8,5)$ $0$
$8$ $4$ $(2,3,6,5)(4,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.