Properties

Label 4.2e8_3e4_7e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{8} \cdot 3^{4} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1016064= 2^{8} \cdot 3^{4} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{6} + 6 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 58 + 413\cdot 421 + 143\cdot 421^{2} + 55\cdot 421^{3} + 269\cdot 421^{4} + 139\cdot 421^{5} + 377\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 80 + 238\cdot 421 + 46\cdot 421^{2} + 137\cdot 421^{3} + 51\cdot 421^{4} + 98\cdot 421^{5} + 194\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 184 + 359\cdot 421 + 38\cdot 421^{2} + 10\cdot 421^{3} + 312\cdot 421^{4} + 53\cdot 421^{5} + 154\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 194 + 402\cdot 421 + 88\cdot 421^{2} + 239\cdot 421^{3} + 204\cdot 421^{4} + 29\cdot 421^{5} + 230\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 227 + 18\cdot 421 + 332\cdot 421^{2} + 181\cdot 421^{3} + 216\cdot 421^{4} + 391\cdot 421^{5} + 190\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 237 + 61\cdot 421 + 382\cdot 421^{2} + 410\cdot 421^{3} + 108\cdot 421^{4} + 367\cdot 421^{5} + 266\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 341 + 182\cdot 421 + 374\cdot 421^{2} + 283\cdot 421^{3} + 369\cdot 421^{4} + 322\cdot 421^{5} + 226\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 363 + 7\cdot 421 + 277\cdot 421^{2} + 365\cdot 421^{3} + 151\cdot 421^{4} + 281\cdot 421^{5} + 43\cdot 421^{6} +O\left(421^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,6)(2,5)(3,8)(4,7)$
$(1,2,8,7)(3,5,6,4)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,6)(2,5)(3,8)(4,7)$ $0$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$
$4$ $2$ $(1,2)(4,5)(7,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,5,6,4)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$4$ $8$ $(1,6,7,5,8,3,2,4)$ $0$
$4$ $8$ $(1,4,7,6,8,5,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.