Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 58 + 413\cdot 421 + 143\cdot 421^{2} + 55\cdot 421^{3} + 269\cdot 421^{4} + 139\cdot 421^{5} + 377\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 80 + 238\cdot 421 + 46\cdot 421^{2} + 137\cdot 421^{3} + 51\cdot 421^{4} + 98\cdot 421^{5} + 194\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 184 + 359\cdot 421 + 38\cdot 421^{2} + 10\cdot 421^{3} + 312\cdot 421^{4} + 53\cdot 421^{5} + 154\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 194 + 402\cdot 421 + 88\cdot 421^{2} + 239\cdot 421^{3} + 204\cdot 421^{4} + 29\cdot 421^{5} + 230\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 227 + 18\cdot 421 + 332\cdot 421^{2} + 181\cdot 421^{3} + 216\cdot 421^{4} + 391\cdot 421^{5} + 190\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 237 + 61\cdot 421 + 382\cdot 421^{2} + 410\cdot 421^{3} + 108\cdot 421^{4} + 367\cdot 421^{5} + 266\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 341 + 182\cdot 421 + 374\cdot 421^{2} + 283\cdot 421^{3} + 369\cdot 421^{4} + 322\cdot 421^{5} + 226\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 363 + 7\cdot 421 + 277\cdot 421^{2} + 365\cdot 421^{3} + 151\cdot 421^{4} + 281\cdot 421^{5} + 43\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,7)(2,8)(4,5)$ |
| $(1,6)(2,5)(3,8)(4,7)$ |
| $(1,2,8,7)(3,5,6,4)$ |
| $(1,8)(2,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(2,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,6)(2,5)(3,8)(4,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)(2,8)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(4,5)(7,8)$ |
$0$ |
| $2$ |
$4$ |
$(1,2,8,7)(3,5,6,4)$ |
$0$ |
| $2$ |
$4$ |
$(1,7,8,2)(3,5,6,4)$ |
$0$ |
| $4$ |
$4$ |
$(1,6,8,3)(2,5,7,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,7,5,8,3,2,4)$ |
$0$ |
| $4$ |
$8$ |
$(1,4,7,6,8,5,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.