Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 + 230\cdot 421 + 265\cdot 421^{2} + 39\cdot 421^{3} + 167\cdot 421^{4} + 99\cdot 421^{5} + 260\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 137 + 238\cdot 421 + 232\cdot 421^{2} + 127\cdot 421^{3} + 188\cdot 421^{4} + 236\cdot 421^{5} + 10\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 153 + 36\cdot 421 + 377\cdot 421^{2} + 251\cdot 421^{3} + 329\cdot 421^{4} + 392\cdot 421^{5} + 166\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 206 + 34\cdot 421 + 50\cdot 421^{2} + 404\cdot 421^{3} + 33\cdot 421^{4} + 38\cdot 421^{5} + 166\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 215 + 386\cdot 421 + 370\cdot 421^{2} + 16\cdot 421^{3} + 387\cdot 421^{4} + 382\cdot 421^{5} + 254\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 268 + 384\cdot 421 + 43\cdot 421^{2} + 169\cdot 421^{3} + 91\cdot 421^{4} + 28\cdot 421^{5} + 254\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 284 + 182\cdot 421 + 188\cdot 421^{2} + 293\cdot 421^{3} + 232\cdot 421^{4} + 184\cdot 421^{5} + 410\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 419 + 190\cdot 421 + 155\cdot 421^{2} + 381\cdot 421^{3} + 253\cdot 421^{4} + 321\cdot 421^{5} + 160\cdot 421^{6} +O\left(421^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,6,4,2,8,3,5,7)$ |
| $(1,8)(2,7)(3,6)(4,5)$ |
| $(1,4,8,5)(2,6,7,3)$ |
| $(1,8)(4,5)$ |
| $(1,2)(3,5)(4,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,8)(2,7)(3,6)(4,5)$ |
$-4$ |
| $2$ |
$2$ |
$(1,8)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,7)(5,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,2)(3,5)(4,6)(7,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,8)(2,3)(6,7)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,3,7,6)$ |
$0$ |
| $2$ |
$4$ |
$(1,4,8,5)(2,6,7,3)$ |
$0$ |
| $4$ |
$4$ |
$(1,2,8,7)(3,4,6,5)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,4,2,8,3,5,7)$ |
$0$ |
| $4$ |
$8$ |
$(1,6,5,7,8,3,4,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.