Properties

Label 4.2e8_3e4_7e2.8t15.1
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{8} \cdot 3^{4} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$1016064= 2^{8} \cdot 3^{4} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{8} + 3 x^{6} - 6 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 421 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 2 + 230\cdot 421 + 265\cdot 421^{2} + 39\cdot 421^{3} + 167\cdot 421^{4} + 99\cdot 421^{5} + 260\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 137 + 238\cdot 421 + 232\cdot 421^{2} + 127\cdot 421^{3} + 188\cdot 421^{4} + 236\cdot 421^{5} + 10\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 153 + 36\cdot 421 + 377\cdot 421^{2} + 251\cdot 421^{3} + 329\cdot 421^{4} + 392\cdot 421^{5} + 166\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 206 + 34\cdot 421 + 50\cdot 421^{2} + 404\cdot 421^{3} + 33\cdot 421^{4} + 38\cdot 421^{5} + 166\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 215 + 386\cdot 421 + 370\cdot 421^{2} + 16\cdot 421^{3} + 387\cdot 421^{4} + 382\cdot 421^{5} + 254\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 268 + 384\cdot 421 + 43\cdot 421^{2} + 169\cdot 421^{3} + 91\cdot 421^{4} + 28\cdot 421^{5} + 254\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 284 + 182\cdot 421 + 188\cdot 421^{2} + 293\cdot 421^{3} + 232\cdot 421^{4} + 184\cdot 421^{5} + 410\cdot 421^{6} +O\left(421^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 419 + 190\cdot 421 + 155\cdot 421^{2} + 381\cdot 421^{3} + 253\cdot 421^{4} + 321\cdot 421^{5} + 160\cdot 421^{6} +O\left(421^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,4,2,8,3,5,7)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,8)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(4,5)$ $0$
$4$ $2$ $(1,4)(2,7)(5,8)$ $0$
$4$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$4$ $2$ $(1,8)(2,3)(6,7)$ $0$
$2$ $4$ $(1,4,8,5)(2,3,7,6)$ $0$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$
$4$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$4$ $8$ $(1,6,4,2,8,3,5,7)$ $0$
$4$ $8$ $(1,6,5,7,8,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.