Properties

Label 4.2e8_3e4_5e4.8t16.6c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$12960000= 2^{8} \cdot 3^{4} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 15 x^{6} + 90 x^{4} - 270 x^{2} + 405 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 101 }$ to precision 12.
Roots:
$r_{ 1 }$ $=$ $ 16 + 95\cdot 101 + 39\cdot 101^{2} + 16\cdot 101^{3} + 18\cdot 101^{4} + 16\cdot 101^{5} + 51\cdot 101^{6} + 73\cdot 101^{7} + 6\cdot 101^{8} + 63\cdot 101^{9} + 8\cdot 101^{10} + 7\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 18 + 80\cdot 101 + 29\cdot 101^{2} + 24\cdot 101^{3} + 48\cdot 101^{4} + 92\cdot 101^{5} + 4\cdot 101^{6} + 39\cdot 101^{7} + 47\cdot 101^{8} + 101^{9} + 49\cdot 101^{10} + 65\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 20 + 97\cdot 101 + 21\cdot 101^{2} + 46\cdot 101^{3} + 58\cdot 101^{4} + 9\cdot 101^{5} + 47\cdot 101^{6} + 7\cdot 101^{7} + 8\cdot 101^{8} + 50\cdot 101^{9} + 51\cdot 101^{10} + 31\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 34 + 65\cdot 101 + 83\cdot 101^{2} + 95\cdot 101^{3} + 83\cdot 101^{4} + 42\cdot 101^{5} + 64\cdot 101^{6} + 54\cdot 101^{7} + 37\cdot 101^{8} + 2\cdot 101^{9} + 71\cdot 101^{10} + 38\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 67 + 35\cdot 101 + 17\cdot 101^{2} + 5\cdot 101^{3} + 17\cdot 101^{4} + 58\cdot 101^{5} + 36\cdot 101^{6} + 46\cdot 101^{7} + 63\cdot 101^{8} + 98\cdot 101^{9} + 29\cdot 101^{10} + 62\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 81 + 3\cdot 101 + 79\cdot 101^{2} + 54\cdot 101^{3} + 42\cdot 101^{4} + 91\cdot 101^{5} + 53\cdot 101^{6} + 93\cdot 101^{7} + 92\cdot 101^{8} + 50\cdot 101^{9} + 49\cdot 101^{10} + 69\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 83 + 20\cdot 101 + 71\cdot 101^{2} + 76\cdot 101^{3} + 52\cdot 101^{4} + 8\cdot 101^{5} + 96\cdot 101^{6} + 61\cdot 101^{7} + 53\cdot 101^{8} + 99\cdot 101^{9} + 51\cdot 101^{10} + 35\cdot 101^{11} +O\left(101^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 85 + 5\cdot 101 + 61\cdot 101^{2} + 84\cdot 101^{3} + 82\cdot 101^{4} + 84\cdot 101^{5} + 49\cdot 101^{6} + 27\cdot 101^{7} + 94\cdot 101^{8} + 37\cdot 101^{9} + 92\cdot 101^{10} + 93\cdot 101^{11} +O\left(101^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,2,4,8,3,7,5)$
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,8)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,8)(4,5)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,7,8,2)(3,5,6,4)$$0$
$4$$8$$(1,6,2,4,8,3,7,5)$$0$
$4$$8$$(1,4,7,6,8,5,2,3)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$
$4$$8$$(1,5,2,3,8,4,7,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.