Properties

Label 4.2e8_3e4_5e4.8t16.3
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$12960000= 2^{8} \cdot 3^{4} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 15 x^{4} + 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 181 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 7 + 169\cdot 181 + 133\cdot 181^{2} + 155\cdot 181^{3} + 138\cdot 181^{4} + 156\cdot 181^{5} + 47\cdot 181^{6} + 112\cdot 181^{7} + 88\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 48 + 94\cdot 181 + 107\cdot 181^{2} + 115\cdot 181^{3} + 51\cdot 181^{4} + 136\cdot 181^{5} + 88\cdot 181^{6} + 22\cdot 181^{7} + 133\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 53 + 111\cdot 181 + 104\cdot 181^{2} + 113\cdot 181^{3} + 21\cdot 181^{4} + 166\cdot 181^{5} + 170\cdot 181^{6} + 134\cdot 181^{7} + 100\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 79 + 136\cdot 181 + 88\cdot 181^{2} + 29\cdot 181^{3} + 165\cdot 181^{4} + 27\cdot 181^{5} + 154\cdot 181^{6} + 115\cdot 181^{7} + 92\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 102 + 44\cdot 181 + 92\cdot 181^{2} + 151\cdot 181^{3} + 15\cdot 181^{4} + 153\cdot 181^{5} + 26\cdot 181^{6} + 65\cdot 181^{7} + 88\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 128 + 69\cdot 181 + 76\cdot 181^{2} + 67\cdot 181^{3} + 159\cdot 181^{4} + 14\cdot 181^{5} + 10\cdot 181^{6} + 46\cdot 181^{7} + 80\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 133 + 86\cdot 181 + 73\cdot 181^{2} + 65\cdot 181^{3} + 129\cdot 181^{4} + 44\cdot 181^{5} + 92\cdot 181^{6} + 158\cdot 181^{7} + 47\cdot 181^{8} +O\left(181^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 174 + 11\cdot 181 + 47\cdot 181^{2} + 25\cdot 181^{3} + 42\cdot 181^{4} + 24\cdot 181^{5} + 133\cdot 181^{6} + 68\cdot 181^{7} + 92\cdot 181^{8} +O\left(181^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7,5,8,3,2,4)$
$(2,7)(4,5)$
$(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$
$4$ $8$ $(1,6,7,5,8,3,2,4)$ $0$
$4$ $8$ $(1,5,2,6,8,4,7,3)$ $0$
$4$ $8$ $(1,6,7,4,8,3,2,5)$ $0$
$4$ $8$ $(1,4,2,6,8,5,7,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.