Properties

Label 4.2e8_3e4_5e4.8t16.2
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$12960000= 2^{8} \cdot 3^{4} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 60 x^{4} - 45 x^{2} + 45 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 89 }$ to precision 13.
Roots:
$r_{ 1 }$ $=$ $ 16 + 75\cdot 89 + 18\cdot 89^{2} + 19\cdot 89^{3} + 61\cdot 89^{4} + 2\cdot 89^{5} + 53\cdot 89^{6} + 3\cdot 89^{7} + 71\cdot 89^{8} + 54\cdot 89^{9} + 17\cdot 89^{10} + 62\cdot 89^{11} + 30\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 35 + 15\cdot 89 + 60\cdot 89^{2} + 3\cdot 89^{3} + 54\cdot 89^{4} + 52\cdot 89^{5} + 45\cdot 89^{6} + 54\cdot 89^{7} + 58\cdot 89^{8} + 71\cdot 89^{9} + 56\cdot 89^{10} + 11\cdot 89^{11} + 32\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 37 + 30\cdot 89 + 60\cdot 89^{2} + 49\cdot 89^{3} + 9\cdot 89^{4} + 10\cdot 89^{5} + 63\cdot 89^{6} + 47\cdot 89^{7} + 49\cdot 89^{8} + 52\cdot 89^{9} + 65\cdot 89^{10} + 87\cdot 89^{11} + 63\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 40 + 62\cdot 89 + 29\cdot 89^{2} + 51\cdot 89^{3} + 75\cdot 89^{4} + 27\cdot 89^{5} + 66\cdot 89^{6} + 12\cdot 89^{7} + 59\cdot 89^{8} + 63\cdot 89^{9} + 45\cdot 89^{10} + 42\cdot 89^{11} + 44\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 49 + 26\cdot 89 + 59\cdot 89^{2} + 37\cdot 89^{3} + 13\cdot 89^{4} + 61\cdot 89^{5} + 22\cdot 89^{6} + 76\cdot 89^{7} + 29\cdot 89^{8} + 25\cdot 89^{9} + 43\cdot 89^{10} + 46\cdot 89^{11} + 44\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 52 + 58\cdot 89 + 28\cdot 89^{2} + 39\cdot 89^{3} + 79\cdot 89^{4} + 78\cdot 89^{5} + 25\cdot 89^{6} + 41\cdot 89^{7} + 39\cdot 89^{8} + 36\cdot 89^{9} + 23\cdot 89^{10} + 89^{11} + 25\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 54 + 73\cdot 89 + 28\cdot 89^{2} + 85\cdot 89^{3} + 34\cdot 89^{4} + 36\cdot 89^{5} + 43\cdot 89^{6} + 34\cdot 89^{7} + 30\cdot 89^{8} + 17\cdot 89^{9} + 32\cdot 89^{10} + 77\cdot 89^{11} + 56\cdot 89^{12} +O\left(89^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 73 + 13\cdot 89 + 70\cdot 89^{2} + 69\cdot 89^{3} + 27\cdot 89^{4} + 86\cdot 89^{5} + 35\cdot 89^{6} + 85\cdot 89^{7} + 17\cdot 89^{8} + 34\cdot 89^{9} + 71\cdot 89^{10} + 26\cdot 89^{11} + 58\cdot 89^{12} +O\left(89^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4,8,6,7,5)$
$(3,6)(4,5)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(3,6)(4,5)$ $0$
$4$ $2$ $(2,7)(3,6)$ $0$
$4$ $2$ $(1,2)(3,5)(4,6)(7,8)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$4$ $8$ $(1,3,2,4,8,6,7,5)$ $0$
$4$ $8$ $(1,4,7,3,8,5,2,6)$ $0$
$4$ $8$ $(1,3,7,4,8,6,2,5)$ $0$
$4$ $8$ $(1,4,2,3,8,5,7,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.