Properties

Label 4.2e8_3e4_5e3.10t12.4c1
Dimension 4
Group $S_5$
Conductor $ 2^{8} \cdot 3^{4} \cdot 5^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2592000= 2^{8} \cdot 3^{4} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 4 x^{3} - 4 x^{2} + 2 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 + 48\cdot 67 + 24\cdot 67^{2} + 2\cdot 67^{3} + 4\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 55 + \left(9 a + 39\right)\cdot 67 + \left(16 a + 44\right)\cdot 67^{2} + \left(38 a + 64\right)\cdot 67^{3} + \left(13 a + 39\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 52 + \left(57 a + 60\right)\cdot 67 + \left(50 a + 32\right)\cdot 67^{2} + 28 a\cdot 67^{3} + \left(53 a + 56\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 44 + 48\cdot 67 + 30\cdot 67^{2} + 36\cdot 67^{3} + 54\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 42 + 3\cdot 67 + 67^{2} + 30\cdot 67^{3} + 46\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.