Properties

Label 4.2e8_3e4_17e2.8t23.6
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{8} \cdot 3^{4} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$5992704= 2^{8} \cdot 3^{4} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} + 6 x^{6} - 6 x^{5} + 12 x^{4} - 12 x^{3} - 24 x^{2} - 6 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 32 + \left(35 a + 27\right)\cdot 59 + \left(30 a + 27\right)\cdot 59^{2} + \left(17 a + 36\right)\cdot 59^{3} + \left(15 a + 55\right)\cdot 59^{4} + \left(8 a + 30\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 48 a + 43 + \left(23 a + 51\right)\cdot 59 + \left(28 a + 22\right)\cdot 59^{2} + \left(41 a + 23\right)\cdot 59^{3} + \left(43 a + 53\right)\cdot 59^{4} + \left(50 a + 23\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 45 a + 11 + \left(25 a + 30\right)\cdot 59 + \left(21 a + 17\right)\cdot 59^{2} + \left(a + 3\right)\cdot 59^{3} + \left(35 a + 45\right)\cdot 59^{4} + \left(5 a + 51\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 50 + 9\cdot 59 + 52\cdot 59^{2} + 17\cdot 59^{3} + 59^{4} + 47\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 58 + \left(3 a + 16\right)\cdot 59 + \left(12 a + 26\right)\cdot 59^{2} + \left(13 a + 57\right)\cdot 59^{3} + \left(10 a + 25\right)\cdot 59^{4} + \left(16 a + 23\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 29 + 26\cdot 59 + 41\cdot 59^{2} + 55\cdot 59^{3} + 11\cdot 59^{4} + 7\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 42 a + 16 + \left(55 a + 3\right)\cdot 59 + \left(46 a + 35\right)\cdot 59^{2} + \left(45 a + 58\right)\cdot 59^{3} + \left(48 a + 22\right)\cdot 59^{4} + \left(42 a + 29\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 14 a + 56 + \left(33 a + 10\right)\cdot 59 + \left(37 a + 13\right)\cdot 59^{2} + \left(57 a + 42\right)\cdot 59^{3} + \left(23 a + 19\right)\cdot 59^{4} + \left(53 a + 22\right)\cdot 59^{5} +O\left(59^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,2)(5,6,7)$
$(1,5)(2,7)(3,8)(4,6)$
$(1,5)(2,6)(4,7)$
$(1,8,5,3)(2,4,7,6)$
$(1,2,5,7)(3,4,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $-4$
$12$ $2$ $(1,5)(2,6)(4,7)$ $0$
$8$ $3$ $(2,6,3)(4,8,7)$ $1$
$6$ $4$ $(1,2,5,7)(3,4,8,6)$ $0$
$8$ $6$ $(1,6,2,5,4,7)(3,8)$ $-1$
$6$ $8$ $(1,6,3,7,5,4,8,2)$ $0$
$6$ $8$ $(1,4,3,2,5,6,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.