Properties

Label 4.2e8_3e4_13e2.8t26.5
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{8} \cdot 3^{4} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$3504384= 2^{8} \cdot 3^{4} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} + x^{4} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 16 + 139\cdot 157 + 140\cdot 157^{2} + 114\cdot 157^{3} + 31\cdot 157^{4} + 103\cdot 157^{5} + 83\cdot 157^{6} + 143\cdot 157^{7} + 25\cdot 157^{8} + 107\cdot 157^{9} + 43\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 23 + 9\cdot 157 + 16\cdot 157^{2} + 24\cdot 157^{3} + 13\cdot 157^{4} + 52\cdot 157^{5} + 39\cdot 157^{6} + 112\cdot 157^{7} + 117\cdot 157^{8} + 136\cdot 157^{9} + 130\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 48 + 72\cdot 157 + 24\cdot 157^{2} + 119\cdot 157^{3} + 75\cdot 157^{4} + 62\cdot 157^{5} + 106\cdot 157^{6} + 11\cdot 157^{7} + 103\cdot 157^{8} + 4\cdot 157^{9} + 98\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 69 + 110\cdot 157 + 22\cdot 157^{2} + 87\cdot 157^{3} + 41\cdot 157^{4} + 41\cdot 157^{5} + 154\cdot 157^{6} + 78\cdot 157^{7} + 38\cdot 157^{8} + 103\cdot 157^{9} + 20\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 88 + 46\cdot 157 + 134\cdot 157^{2} + 69\cdot 157^{3} + 115\cdot 157^{4} + 115\cdot 157^{5} + 2\cdot 157^{6} + 78\cdot 157^{7} + 118\cdot 157^{8} + 53\cdot 157^{9} + 136\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 109 + 84\cdot 157 + 132\cdot 157^{2} + 37\cdot 157^{3} + 81\cdot 157^{4} + 94\cdot 157^{5} + 50\cdot 157^{6} + 145\cdot 157^{7} + 53\cdot 157^{8} + 152\cdot 157^{9} + 58\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 134 + 147\cdot 157 + 140\cdot 157^{2} + 132\cdot 157^{3} + 143\cdot 157^{4} + 104\cdot 157^{5} + 117\cdot 157^{6} + 44\cdot 157^{7} + 39\cdot 157^{8} + 20\cdot 157^{9} + 26\cdot 157^{10} +O\left(157^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 141 + 17\cdot 157 + 16\cdot 157^{2} + 42\cdot 157^{3} + 125\cdot 157^{4} + 53\cdot 157^{5} + 73\cdot 157^{6} + 13\cdot 157^{7} + 131\cdot 157^{8} + 49\cdot 157^{9} + 113\cdot 157^{10} +O\left(157^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,2,4,8,6,7,5)$
$(2,7)(4,5)$
$(1,8)(3,6)$
$(1,8)(2,7)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,8)(2,7)$ $0$
$4$ $2$ $(1,8)(3,6)$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$
$4$ $2$ $(1,5)(2,3)(4,8)(6,7)$ $0$
$4$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$
$8$ $2$ $(1,8)(3,5)(4,6)$ $0$
$2$ $4$ $(1,2,8,7)(3,4,6,5)$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$
$4$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
$4$ $4$ $(1,7,8,2)$ $-2$
$4$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$
$4$ $4$ $(1,8)(2,7)(3,4,6,5)$ $2$
$8$ $8$ $(1,3,2,4,8,6,7,5)$ $0$
$8$ $8$ $(1,3,7,4,8,6,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.