Properties

Label 4.2e8_3e2_5e3.8t21.4c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$288000= 2^{8} \cdot 3^{2} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 10 x^{6} - 20 x^{5} + 30 x^{4} - 52 x^{3} + 64 x^{2} - 40 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 58\cdot 149 + 102\cdot 149^{2} + 99\cdot 149^{3} + 81\cdot 149^{4} + 81\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 34\cdot 149 + 21\cdot 149^{2} + 122\cdot 149^{3} + 7\cdot 149^{4} + 90\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 16 + 83\cdot 149 + 43\cdot 149^{2} + 105\cdot 149^{3} + 90\cdot 149^{4} + 131\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 19 + 28\cdot 149 + 55\cdot 149^{2} + 48\cdot 149^{3} + 43\cdot 149^{4} + 42\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 59 + 17\cdot 149 + 135\cdot 149^{2} + 144\cdot 149^{3} + 45\cdot 149^{4} + 74\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 76 + 134\cdot 149 + 96\cdot 149^{2} + 27\cdot 149^{3} + 131\cdot 149^{4} + 128\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 120 + 14\cdot 149 + 70\cdot 149^{2} + 31\cdot 149^{3} + 12\cdot 149^{4} + 79\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 145 + 76\cdot 149 + 71\cdot 149^{2} + 16\cdot 149^{3} + 34\cdot 149^{4} + 117\cdot 149^{5} +O\left(149^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(4,7,5,8)$
$(1,5,6,4)(2,7,3,8)$
$(1,3)(2,6)(4,8)(5,7)$
$(1,6)(2,3)$
$(4,5)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,3)(4,5)(7,8)$$-4$
$2$$2$$(1,6)(2,3)$$0$
$2$$2$$(1,3)(2,6)(4,8)(5,7)$$0$
$2$$2$$(1,2)(3,6)(4,8)(5,7)$$0$
$4$$2$$(1,7)(2,5)(3,4)(6,8)$$0$
$4$$4$$(1,5,6,4)(2,7,3,8)$$0$
$4$$4$$(1,8,2,5)(3,4,6,7)$$0$
$4$$4$$(1,5,2,8)(3,7,6,4)$$0$
$4$$4$$(1,6)(4,7,5,8)$$0$
$4$$4$$(1,6)(4,8,5,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.