Properties

Label 4.2e8_3e2_5e3.8t21.3
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$288000= 2^{8} \cdot 3^{2} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{6} - 14 x^{4} + 28 x^{2} + 24 x + 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 91 + 180\cdot 269 + 41\cdot 269^{2} + 87\cdot 269^{3} + 148\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 111 + 129\cdot 269 + 187\cdot 269^{2} + 5\cdot 269^{3} + 249\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 142 + 232\cdot 269 + 95\cdot 269^{2} + 43\cdot 269^{3} + 42\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 146 + 30\cdot 269 + 183\cdot 269^{2} + 172\cdot 269^{3} + 218\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 182 + 37\cdot 269 + 134\cdot 269^{2} + 121\cdot 269^{3} + 184\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 189 + 24\cdot 269 + 33\cdot 269^{2} + 136\cdot 269^{3} + 175\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 230 + 246\cdot 269 + 226\cdot 269^{2} + 177\cdot 269^{3} + 106\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 256 + 193\cdot 269 + 173\cdot 269^{2} + 62\cdot 269^{3} + 220\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(4,5)$
$(1,5,7,4)(2,8)$
$(1,5)(2,6)(3,8)(4,7)$
$(1,7)(2,8)(3,6)(4,5)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,8)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $0$
$2$ $2$ $(1,5)(2,3)(4,7)(6,8)$ $0$
$2$ $2$ $(1,7)(4,5)$ $0$
$4$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$4$ $4$ $(1,3,5,2)(4,8,7,6)$ $0$
$4$ $4$ $(1,2,5,3)(4,6,7,8)$ $0$
$4$ $4$ $(1,5,7,4)(2,8)$ $0$
$4$ $4$ $(1,4,7,5)(2,8)$ $0$
$4$ $4$ $(1,2,7,8)(3,5,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.