Properties

Label 4.2e8_3e2_5e3.8t21.2
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$288000= 2^{8} \cdot 3^{2} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 2 x^{5} + 4 x^{4} + 2 x^{3} + 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 60\cdot 149 + 19\cdot 149^{2} + 35\cdot 149^{3} + 26\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 127\cdot 149 + 25\cdot 149^{2} + 66\cdot 149^{3} + 55\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 61 + 130\cdot 149 + 146\cdot 149^{2} + 82\cdot 149^{3} + 137\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 78 + 67\cdot 149 + 144\cdot 149^{2} + 148\cdot 149^{3} + 28\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 86 + 72\cdot 149 + 76\cdot 149^{2} + 25\cdot 149^{3} + 116\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 99 + 6\cdot 149 + 84\cdot 149^{2} + 2\cdot 149^{3} + 70\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 123 + 40\cdot 149 + 115\cdot 149^{2} + 18\cdot 149^{3} + 103\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 127 + 90\cdot 149 + 132\cdot 149^{2} + 66\cdot 149^{3} + 58\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(2,4)(3,8)(5,7)$
$(1,2,6,4)(3,7,8,5)$
$(2,4)(3,8)$
$(1,7)(2,8)(3,4)(5,6)$
$(2,8,4,3)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $-4$
$2$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $2$ $(1,7)(2,3)(4,8)(5,6)$ $0$
$2$ $2$ $(1,6)(5,7)$ $0$
$4$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $0$
$4$ $4$ $(1,2,6,4)(3,7,8,5)$ $0$
$4$ $4$ $(1,8,7,4)(2,6,3,5)$ $0$
$4$ $4$ $(1,4,7,8)(2,5,3,6)$ $0$
$4$ $4$ $(1,5,6,7)(2,4)$ $0$
$4$ $4$ $(1,7,6,5)(2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.