Properties

Label 4.2e8_3e2_5e3.8t21.1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$288000= 2^{8} \cdot 3^{2} \cdot 5^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 2 x^{5} + 8 x^{4} + 2 x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 5 + 44\cdot 269 + 167\cdot 269^{2} + 68\cdot 269^{3} + 145\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 218\cdot 269 + 59\cdot 269^{2} + 110\cdot 269^{3} + 12\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 54 + 224\cdot 269 + 150\cdot 269^{2} + 241\cdot 269^{3} + 164\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 + 235\cdot 269 + 141\cdot 269^{2} + 200\cdot 269^{3} + 259\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 152 + 35\cdot 269 + 73\cdot 269^{2} + 35\cdot 269^{3} + 109\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 241 + 31\cdot 269 + 108\cdot 269^{2} + 178\cdot 269^{3} + 195\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 246 + 15\cdot 269 + 225\cdot 269^{2} + 237\cdot 269^{3} + 65\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 265 + 269 + 150\cdot 269^{2} + 3\cdot 269^{3} + 123\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,6)(4,8)(5,7)$
$(1,6,3,2)(4,7,8,5)$
$(2,6)(4,8)$
$(1,5)(2,8)(3,7)(4,6)$
$(1,3)(2,4,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,3)(2,6)(4,8)(5,7)$ $-4$
$2$ $2$ $(1,5)(2,8)(3,7)(4,6)$ $0$
$2$ $2$ $(1,5)(2,4)(3,7)(6,8)$ $0$
$2$ $2$ $(2,6)(4,8)$ $0$
$4$ $2$ $(1,4)(2,7)(3,8)(5,6)$ $0$
$4$ $4$ $(1,6,3,2)(4,7,8,5)$ $0$
$4$ $4$ $(1,8,5,6)(2,3,4,7)$ $0$
$4$ $4$ $(1,6,5,8)(2,7,4,3)$ $0$
$4$ $4$ $(1,3)(2,4,6,8)$ $0$
$4$ $4$ $(1,3)(2,8,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.