Properties

Label 4.2e8_3e2_5e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{8} \cdot 3^{2} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$57600= 2^{8} \cdot 3^{2} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{4} - 4 x^{3} - 8 x^{2} - 8 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 3\cdot 23 + 14\cdot 23^{2} + 20\cdot 23^{4} + 18\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 3 + \left(21 a + 18\right)\cdot 23 + \left(20 a + 11\right)\cdot 23^{2} + \left(21 a + 1\right)\cdot 23^{3} + \left(7 a + 16\right)\cdot 23^{4} + \left(14 a + 9\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 5 + \left(14 a + 10\right)\cdot 23 + \left(12 a + 18\right)\cdot 23^{2} + \left(17 a + 6\right)\cdot 23^{3} + \left(7 a + 7\right)\cdot 23^{4} + \left(a + 16\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 6 + \left(8 a + 4\right)\cdot 23 + \left(10 a + 6\right)\cdot 23^{2} + \left(5 a + 6\right)\cdot 23^{3} + \left(15 a + 5\right)\cdot 23^{4} + \left(21 a + 11\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 21 + 9\cdot 23 + 9\cdot 23^{2} + 6\cdot 23^{3} + 10\cdot 23^{4} + 5\cdot 23^{5} +O\left(23^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 10 + a\cdot 23 + \left(2 a + 9\right)\cdot 23^{2} + \left(a + 1\right)\cdot 23^{3} + \left(15 a + 10\right)\cdot 23^{4} + \left(8 a + 7\right)\cdot 23^{5} +O\left(23^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6,5)$
$(1,4,3)$
$(3,4)(5,6)$
$(1,6,4,2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,6)(2,3)(4,5)$$0$
$9$$2$$(3,4)(5,6)$$0$
$2$$3$$(1,4,3)(2,5,6)$$-2$
$2$$3$$(1,4,3)(2,6,5)$$-2$
$4$$3$$(1,4,3)$$1$
$6$$6$$(1,6,4,2,3,5)$$0$
$6$$6$$(1,2,3,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.