Properties

Label 4.2e8_3e2_37e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{8} \cdot 3^{2} \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$3154176= 2^{8} \cdot 3^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 5 x^{4} - 9 x^{2} + 2 x + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 21 + \left(12 a + 7\right)\cdot 29 + \left(12 a + 8\right)\cdot 29^{2} + \left(14 a + 2\right)\cdot 29^{3} + \left(3 a + 18\right)\cdot 29^{4} + \left(3 a + 8\right)\cdot 29^{5} + \left(8 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 3 + 25\cdot 29 + 22\cdot 29^{2} + 23\cdot 29^{3} + 28\cdot 29^{4} + 4\cdot 29^{5} + 8\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 4 + \left(4 a + 16\right)\cdot 29 + \left(21 a + 7\right)\cdot 29^{2} + \left(28 a + 15\right)\cdot 29^{3} + \left(28 a + 23\right)\cdot 29^{4} + \left(4 a + 23\right)\cdot 29^{5} + \left(19 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 15 + \left(16 a + 20\right)\cdot 29 + \left(16 a + 28\right)\cdot 29^{2} + \left(14 a + 3\right)\cdot 29^{3} + \left(25 a + 21\right)\cdot 29^{4} + \left(25 a + 20\right)\cdot 29^{5} + \left(20 a + 7\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 25 + 22\cdot 29 + 26\cdot 29^{2} + 19\cdot 29^{3} + 9\cdot 29^{5} + 10\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 21 + \left(24 a + 23\right)\cdot 29 + \left(7 a + 21\right)\cdot 29^{2} + 21\cdot 29^{3} + 23\cdot 29^{4} + \left(24 a + 19\right)\cdot 29^{5} + \left(9 a + 3\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(5,6)$
$(3,5,6)$
$(2,4)(5,6)$
$(1,5,4,3,2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$9$$2$$(1,4)(5,6)$$0$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$2$$3$$(1,2,4)(3,6,5)$$-2$
$4$$3$$(3,5,6)$$1$
$6$$6$$(1,5,4,3,2,6)$$0$
$6$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.