Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 22 a + 21 + \left(12 a + 7\right)\cdot 29 + \left(12 a + 8\right)\cdot 29^{2} + \left(14 a + 2\right)\cdot 29^{3} + \left(3 a + 18\right)\cdot 29^{4} + \left(3 a + 8\right)\cdot 29^{5} + \left(8 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 3 + 25\cdot 29 + 22\cdot 29^{2} + 23\cdot 29^{3} + 28\cdot 29^{4} + 4\cdot 29^{5} + 8\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 15 a + 4 + \left(4 a + 16\right)\cdot 29 + \left(21 a + 7\right)\cdot 29^{2} + \left(28 a + 15\right)\cdot 29^{3} + \left(28 a + 23\right)\cdot 29^{4} + \left(4 a + 23\right)\cdot 29^{5} + \left(19 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 7 a + 15 + \left(16 a + 20\right)\cdot 29 + \left(16 a + 28\right)\cdot 29^{2} + \left(14 a + 3\right)\cdot 29^{3} + \left(25 a + 21\right)\cdot 29^{4} + \left(25 a + 20\right)\cdot 29^{5} + \left(20 a + 7\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 25 + 22\cdot 29 + 26\cdot 29^{2} + 19\cdot 29^{3} + 9\cdot 29^{5} + 10\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 14 a + 21 + \left(24 a + 23\right)\cdot 29 + \left(7 a + 21\right)\cdot 29^{2} + 21\cdot 29^{3} + 23\cdot 29^{4} + \left(24 a + 19\right)\cdot 29^{5} + \left(9 a + 3\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4)(5,6)$ |
| $(3,5,6)$ |
| $(2,4)(5,6)$ |
| $(1,5,4,3,2,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $3$ |
$2$ |
$(1,3)(2,5)(4,6)$ |
$0$ |
| $3$ |
$2$ |
$(1,6)(2,5)(3,4)$ |
$0$ |
| $9$ |
$2$ |
$(1,4)(5,6)$ |
$0$ |
| $2$ |
$3$ |
$(1,4,2)(3,6,5)$ |
$-2$ |
| $2$ |
$3$ |
$(1,2,4)(3,6,5)$ |
$-2$ |
| $4$ |
$3$ |
$(3,5,6)$ |
$1$ |
| $6$ |
$6$ |
$(1,5,4,3,2,6)$ |
$0$ |
| $6$ |
$6$ |
$(1,3,2,6,4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.